Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physiker erzeugen extremes UV-Licht: Ein Nieselregen im Laser-Gewitter

24.10.2000


Mit großer Akribie arbeitet Stefan

Düsterer, Mitarbeiter im Jenaer IOQ, an der Anlage, in der extreme

UV-Strahlen produziert werden. Foto: Scheere


Versuchsaufbau: Der weiße Punkt markiert

einen mit dem Hochleistungslaser "abgeschossenen" Wassertropfen.Foto: IOQ, Uni Jena


Für die Leiterplatten-Lithographie in der Chipindustrie werden Wege gesucht, um noch kleinere Strukturen in fotoempfindliches Oberflächenmaterial zu ätzen. Dazu ist Licht mit erheblich kürzeren Wellenlängen erforderlich, als das bisher verwendete. Eine international hochkompetetive Forschung sucht nach Wegen, um den Technologiesprung in der Chip-Herstellung einzuleiten. - In Jena gibt es einen sehr vielversprechenden Ansatz...

Ein merkwürdiges Experiment haben Laserphysiker der Uni Jena in ihrem Labor aufgebaut: Aus einer ultrafeinen Düse rieselt Wasser, rund eine Million Tropfen pro Sekunde, jeder genau 20 Mikrometer groß. Und mit ihrem Titan-Saphir-Hochleistungslaser, einem der stärksten überhaupt in Deutschland, schießen die Wissenschaftler Tropfen für Tropfen ab. Mit 18 Billionen Watt prasseln die Laserpulse auf den kalkulierten Nieselregen. Aber wozu das ganze? Eine Kirmesattraktion? - "Nein", lacht Labor-Chef Prof. Dr. Roland Sauerbrey verstohlen, "wir produzieren extrem kurzes UV-Licht für den bevorstehenden Technologiesprung in der Chipindustrie." Kein Kinderspiel also: Es geht um den entscheidenden Durchbruch, der in wirtschaftlichen Maßstäben Milliardengewinne verspricht.

Bislang arbeiten Chiphersteller bei der Leiterplatten-Lithographie für Prozessoren und Speicherelemente noch mit vergleichsweise langwelligem Licht, das, mittels komplizierter Optik und tonnenschweren, hochreinen Linsen durch eine Maske fokussiert, auf die fotoempfindliche Oberfläche eines Halbleiter-Wavers mikroskopisch feine Leiterstrukturen ätzt. "Diese Technik ist ausgereizt", weiß Sauerbrey, "will man noch kleinere Strukturen erzeugen, muss der Lichtfokus schärfer werden." Das geht aber, wie schon im 19. Jahrhundert der Jenaer Physiker Ernst Abbe in seiner Beugungs-Theorie berechnete, nur mit weitaus kurzwelligerem Licht.

Etwa bei 13,5 Nanometer Wellenlänge soll es rangieren; es ist für das menschliche Auge längst nicht mehr sichtbar und nur mit aufwändigem technischem Equipment zu produzieren. "Dafür gibt es eigentlich drei erfolgversprechende Konzepte", erklärt Sauerbrey, "man kann mit großen und teuren Elektronensynchrotons arbeiten, mit leider ziemlich leistungsschwachen Entladungsquellen oder aber - indirekt - mit starken Laserpulsen." Klar, welchen Weg der Jenaer Laserexperte mit tatkräftiger Unterstützung der Jenoptik AG favorisiert.

Seit Jahren wissen Physiker, dass hochintensive Laserpulse, wenn sie auf Materie auftreffen, dort ein Plasma erzeugen. Hitze, Druck und vor allem die elektromagnetischen Kräfte wirken derart stark, dass die Elektronenbindungen beim Einschlag auseinander fliegen. Dabei werden auch - je nach chemischer Zusammensetzung des Zielmaterials - Photonen, also Lichtstrahlen unterschiedlicher Wellenlänge, frei. Will man extremes UV-Licht (EUV) zwischen 13 und 14 Nanometern Wellenlänge produzieren, eignen sich Lithium-Festkörper als Zielmaterial am besten.

"Das haben wir versucht, aber es ist für unsere Zwecke leider eine Sackgasse", gesteht Sauerbrey. Denn das Material wird schnell verschlissen, und die auseinanderspritzenden Partikel verunreinigen die umgebende Optik. Die Lösung ist schließlich so einfach, dass man kaum darauf kommt. Die Jenaer Experimentalphysiker nehmen Wasser, H(tief)2O. Sauerbrey: "Dabei entsteht ionisierter Sauerstoff, O(hoch)5+, der genau die gewünschten Photonen emittiert." Das Abfallproblem (Debris) entschwindet als Wasserdampf, und der Nachschub rieselt stetig aus der Düse.

Nun arbeitet das Jenaer Expertenteam aus Prof. Roland Sauerbrey, Dr. Heinrich Schwörer, Wolfgang Ziegler, Christian Ziener und Stefan Düsterer "nur noch" an der optimalen Modulation der Laser-Taktfrequenz, um eine maximale Ausbeute an EUV-Licht zu erzielen. "Wir sind ganz zuversichtlich, dass wir in einigen Jahren eine Lichtquelle für die Hochleistungs-Lithographie in Händen halten: mit 13,5 Nanometer Wellenlänge, 100 Watt Durchschnittsleistung und einer Taktfrequenz über sechs Kilohertz."

Den Vorsprung der amerikanischen Konkurrenz haben die Jenaer Experimentalphysiker nahezu eingeholt. "Industriereif ist das Verfahren aber immer noch nicht, denn es fehlt noch die Optik, die unsere EUV-Strahlung auf den Halbleiter-Waver fokussiert", weiß Sauerbrey. Eine hochkomplexe Apparatur wird erforderlich sein, die Komplett-Lösung kann nur ein internationales Konsortium aus Wissenschaft und Industrie entwickeln. "Zumindest sind wir Europäer wieder im Rennen", freut sich der Jenaer Wissenschaftler, "in zehn Jahren müssten wir es schaffen."

Dann verfinstert sich seine Miene. Scheitert das hochambitionierte Forschungsgroßprojekt, so werden künftig nur noch Japaner und US-Amerikaner die Anlagen für die Chipindustrie bauen. Und das kostet Milliardenumsätze und Arbeitsplätze - auch in Deutschland. Eine Phalanx an Hightech-Firmen steht deshalb als Partner bereit; die bundesweite Koordination soll in Kürze das Bonner Wissenschaftsministerium übernehmen.

Ansprechpartner:
Prof. Dr. Roland Sauerbrey

... mehr zu:
»Optik »Physik »UV-Licht »Wellenlänge

Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Tel.: 03641/947200, Fax: 947202
E-Mail: sauerbrey@qe.physik.uni-jena.de

Friedrich-Schiller-Universität


Referat Öffentlichkeitsarbeit
Dr. Wolfgang Hirsch
Fürstengraben 1
07743 Jena
Tel.: 03641/931031
Fax: 03641/931032
E-Mail: h7wohi@sokrates.verwaltung.uni-jena.de

Dr. Wolfgang Hirsch | idw

Weitere Berichte zu: Optik Physik UV-Licht Wellenlänge

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien
15.08.2018 | Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE

nachricht Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie
15.08.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics