Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Höchstleistungsrechner am Leibniz-Rechenzentrum München

16.12.2004


Die Nutzer von Höchstleistungsrechnern in Deutschland, die mit ihren anspruchsvollen Forschungsvorhaben auf Rechner der Spitzenklasse angewiesen sind, können beruhigt in die Zukunft blicken: Wenn der bisherige Höchstleistungsrechner Hitachi SR8000 am Leibniz-Rechenzentrum (LRZ) der Bayerischen Akademie der Wissenschaften, der von insgesamt über 200 wissenschaftlichen Projekten genutzt wird, im Frühjahr 2006 abgeschaltet wird, wird ein neues, bis zu dreißigmal leistungsfähigeres System bereit stehen.



Das Leibniz-Rechenzentrum hat sich nach einer europaweiten Ausschreibung und der Prüfung einer Reihe attraktiver Angebote für ein System der Firma Silicon Graphics (sgi) mit Intel Itanium-Prozessoren entschieden, weil es die höchste Applikationsrechenleistung erwarten lässt. Eine Besonderheit des ausgewählten Systems ist ein sehr großer, einheitlich adressierbarer Hauptspeicher. Dadurch wird die Programmierung von parallel ablaufenden Anwendungen deutlich erleichtert.



Am 16. Dezember 2004 wurde in München der Vertrag zur Beschaffung des neuen Höchstleistungsrechners in Bayern (HLRB II) unterzeichnet. Der Rechner wird im Neubau des Leibniz-Rechenzentrums in Garching installiert. Planmäßig wird er Anfang 2006 seinen Betrieb aufnehmen. Die Investitionssumme beträgt 38 Millionen Euro, die sich der Freistaat Bayern und der Bund teilen. Die nicht unerheblichen Betriebskosten des Rechners werden vom Land Bayern getragen.

Die Leistung des neuen Rechners ist imposant. In der ersten Ausbaustufe, die Anfang 2006 zur Verfügung steht, kann er bis zu 33 Billionen Rechenoperationen pro Sekunde (33 TFlop/s) durchführen, verglichen mit augenblicklich 2 TFlop/s der Hitachi SR8000. Im Endausbau im Jahr 2007 werden es sogar 69 TFlop/s sein. Die gegenwärtig 1,3 TByte Hauptspeicher werden 2006 auf 20 TByte anwachsen, 2007 sogar auf 40 TByte. Die gegenwärtig 10 TByte Plattenspeicher werden 2006 auf 340 und 2007 auf 660 TByte gesteigert werden.

Eingesetzt wird der neue Rechner vor allem für die Simulation komplexer Systeme und Prozesse in der Physik, Materialforschung, Strömungsdynamik, Astrophysik, Chemie sowie in den Geo- und Biowissenschaften. Beispiele hierfür sind die Untersuchung der Turbulenz, Strömungen in porösen Gebilden, das Zusammenwirken von Strömungen und deformierbaren Strukturen, Entstehung und Ausbreitung von Schall, Hochtemperatur-Supraleitung, Formgedächtnismaterialien, chemische Reaktionen bei Verbrennungs- und Katalyseprozessen, Ausbreitung von seismischen Wellen und Erdbeben sowie die Untersuchung der Beziehungen zwischen Sequenz, Struktur und Funktion bei Proteinen. Voraussetzung für die Nutzung des Rechners ist eine positive Begutachtung des jeweiligen Projektes durch ein Expertengremium.

Die Verfügbarkeit von Höchstleistungsrechnern hat sich zu einem entscheidenden Standortfaktor im internationalen Wettbewerb in Wissenschaft und Technologie entwickelt. Der Wissenschaftsrat hat bereits im Jahr 2000 in seiner Empfehlung zur Nutzung von Höchstleistungsrechnern in Deutschland darauf hingewiesen, dass ein fortlaufender qualitativer und quantitativer Ausbau der Rechnerversorgung unverzichtbar ist und hierzu Rechner der höchsten Leistungsklasse notwendig sind. Das Leibniz-Rechenzentrum wird mit der Neubeschaffung auch in die Lage versetzt, sich als möglicher Standort für einen künftigen europäischen Höchstleistungsrechner zu empfehlen.

Mit der Beschaffung der neuen Rechnerhardware ist die Unterstützung der Anwender bei der Nutzung von Höchstleistungsrechnern verbunden. Neben der Beratung durch das Leibniz-Rechenzentrum unterstützt auch das Kompetenznetzwerk für technisch-wissenschaftliches Hoch- und Höchstleistungsrechnen in Bayern (KONWIHR) die Vorhaben auf dem Rechner fachlich und eröffnet weitere Einsatzpotentiale durch Forschungs- und Entwicklungsvorhaben.

Die Bayerische Akademie der Wissenschaften wurde 1759 in München mit dem Auftrag gegründet, "alle Sachen mit Ausnahme der Glaubenssachen und politischen Streitigkeiten ... zu Gegenständen der Untersuchung zu nehmen". Mit über 300 hauptamtlichen Mitarbeitern und einem Jahresetat von rund 32 Mio. Euro ist sie heute die größte der insgesamt sieben wissenschaftlichen Akademien in der Bundesrepublik. Ihr Schwerpunkt sind interdisziplinäre Grundlagenforschung und langfristig angelegte Forschungsprojekte im geisteswissenschaftlichen und naturwissenschaftlichen Bereich.

Das Leibniz-Rechenzentrum (LRZ) ist eine Einrichtung der Kommission für Informatik der Bayerischen Akademie der Wissenschaften. Heute sind dort ca. 150 Mitarbeiter beschäftigt. Als modernes Dienstleistungsunternehmen ist das LRZ wissenschaftliches Rechenzentrum für die Hochschulen in München und die Bayerische Akademie der Wissenschaften, Zentrum für technisch-wissenschaftliches Hochleistungsrechnen, und Zentrale für die Archivierung großer Datenmengen. Es ist verantwortlich für Planung, Ausbau und Betrieb des Münchner Wissenschaftsnetzes und fungiert als landesweites Kompetenzzentrum für Datenkommunikationsnetze.

Martin Schütz | idw
Weitere Informationen:
http://www.badw.de
http://www.lrz.de

Weitere Berichte zu: Höchstleistungsrechner Leibniz-Rechenzentrum Rechner TByte

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Kryptografie für das Auto der Zukunft
11.10.2019 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Mit einer WebApp passende Grünflächen aufspüren – Interessierte können jetzt Beta-Version testen
11.10.2019 | Leibniz-Institut für ökologische Raumentwicklung e. V.

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics