Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verbesserung der Kapazität von Speicherchips durch Verwendung von Nanokristallen und langen Kettenmolekülen

07.09.2004


Um die momentane Verbesserungsquote bei der Leistung und Kapazität von elektronischen Mikroprozessoren und Speichern beizubehalten, müssen neue Techniken gefunden werden. Ein Gebiet, auf dem wichtige Ergebnisse erzielt werden, ist die Nanotechnologie. Dabei werden herkömmliche Silikonchips mit der Manipulation von Molekülen und der Technologie des Winzigen- auch als Nanoskala bekannt - zusammengeführt.



Im Rahmen des EU Förderprojekts SANEME wurden mehrere Techniken entwickelt, die für die Herstellung von hybriden Mikrochips von großem Wert sind und die traditionelle auf Silikon basierende Herstellung mit der neuen Nanotechnologie verbinden. Bedeutende Errungenschaften liegen bei der Erzeugung von Nanogaps (sehr schmale, ungefähr 5nm kleine Lücken zwischen den Metallelektronen in einem integrierten Schaltkreis) sowie im Modellbau und bei der Erforschung des elektronischen Verhaltens von Molekülen und Nanokristallen.



Die Erzeugung von Nanogaps ist für die Anlagerung der Moleküle an die Silikonchips von Bedeutung. Im Rahmen des Projekt wurden zwei Methoden dafür entwickelt. Bei der einen, auch als Schattenverdampfung bekannten Technik, werden Goldatome in einem bestimmten Winkel zu den Goldschichten auf einem Silikonwafer verdampft. Der Schatten am Rand einer Schicht verursacht eine Lücke von kontrollierbarer Größe zwischen 2 und 6nm.

Die zweite Methode beinhaltet das Ätzen einer Lücke von ungefähr 5nm zwischen die Silikon-Elektroden auf einem Wafer. Die Lücke wird dabei auf die Größe des anzubringenden Moleküls abgestimmt. Bei beiden Herstellungsverfahren werden dann die Moleküle, besonders die mit einer -thiol-Endgruppe, angehangen. Durch Selbstordnung formen diese dann nanoskalige elektronische Schaltkreise.

Die elektrischen Eigenschaften dieser Moleküle bzw. Nanokristalle und ihre Eignung für die Verwendung in nanoelektronischen Geräten wurden dann in einem anderen Teil des Projekts untersucht. Durch Experimente wurde mit Hilfe der Tunnelspektroskopie herausgefunden, dass die Eigenschaften der Moleküle stark abhängig von der Dosierung des Silikons sind. Außerdem wurden Computermodelle benutzt, um herauszufinden, welche Eigenschaften überhaupt für die erfolgreiche Nutzung integrierter Schaltkreise von Bedeutung sind.

Zu den Anwendungen zählen Speicherchips, bei denen die Nanokristalle für den Refresh von DRAM oder TSRAM Direktzugriffsspeichern genutzt werden.

Kontakt:

Chris Ford
University of Cambridge
SP Group
Cavendish Laboratory
Madingley Road
CB3 0HE, Cambridge, Großbritannien
Tel: +44-1223-337486
Email: cjbf@cam.ac.uk

Chris Ford | ctm
Weitere Informationen:
http://www.sp.phy.cam.ac.uk/SPWeb/research/saneme

Weitere Berichte zu: Kapazität Molekül Nanokristall Schaltkreis Speicherchip

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht One step ahead: Adaptive Radarsysteme für smarte Fahrerassistenz
20.09.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Virtual Reality ohne Kopfschmerz oder Simulationsübelkeit
19.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics