Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Lösungs- und Gasführung der Gorleben-Bank im Salzstock Gorleben

27.03.2001


Abb. 1: Primäre und sekundäre Zonen der

Gorleben-Bank.


Abb. 2: a) geringmächtige, verfaltete

Gorleben-Bank ohne Lösungs- und Gasführung b) mächtig ausgebildete

Gorleben-Bank mit möglicher Lösungs- und Gasführung, Bewegungszone

siehe Pfeil.


Die Lösungs- und Gasvorkommen der Gorleben-Bank sind mengenmäßig be-grenzt und befinden sich in abgeschlossenen Reservoiren unter dem Druck des überlagernden Gesteins. Maßgeblichen Einfluss auf die Größe der Vorkommen hat die Mächtigkeit der Gorleben-Bank. Die Gorleben-Bank ist nur dann lösungs- und gasführend, wenn die Mächtigkeit der geschichteten Anhydritlage (Zone V bis VI) mehr als ca. 6 cm beträgt. Die analysierten Lösungen sind salz-stockinternen Ursprungs.

Eine große Aufgabe unserer Zeit ist die sichere Endlagerung von radioaktivem Abfall. Weltweit werden zahlreiche Konzepte verfolgt und unterschiedliche Endlagerungsgesteine auf ihre Eignung getestet. In Deutschland werden im Salzstock Gorleben die Evaporite des Zechsteins untersucht.

Beim Auffahren eines Untersuchungsbergwerkes für ein mögliches Endlager in einem Salzkörper ist die Identifizierung und Beurteilung von Lösungs- und Gasvorkommen von besonderer Bedeutung. Bei der Streckenauffahrung können sie ein Gefahren-potential für Mensch und Maschinen sein. Darüber hinaus sind Lösungen das Transportmedium für Radionuklide. Deshalb ist es für die Entscheidung der Frage, ob der Salzstock die Langzeitsicherheit eines Endlagers gewährleisten kann, notwendig, die Entstehung, die Verbreitung, die Mengen und die Ursachen von untertage angetroffenen Lösungs- und Gasvorkommen zu aufzuklären und zu beurteilen. Ziel der Dissertation von Dr. Günther Bäuerle war es, diese Fragestellungen für die in der Gorleben-Bank angetroffenen Vorkommen zu klären. Die Arbeit entstand bei Professor Dr. Kurt Mengel am Institut für Mineralogie und Mineralische Rohstoffe der TU Clausthal.

In der Abfolge der Salzgestein ist die Gorleben-Bank ist ein Leithorizont im Orangesalz des Zechstein 3. Sie hat eine Mächtigkeit zwischen 3,5 bis 70 cm und weist in vollständiger Ausbildung sieben Zonen auf (Abb. 1): Zone I "Verunreinigter Steinsalzhorizont", Zone II"Flaser-, Flockenanhydrit", Zone III "Tonlage", Zone IV"Bewegungszone", Zone V "Feingeschichteter Anhydrit", Zone VI "GeschichteterAnhydrit" und Zone VII "Vier Anhydritlinien mit Steinsalzzwischenmitteln".

Folgende Ergebnisse konnten zur Entstehung der Gorleben-Bank erarbeitet werden: Die Sedimentation der Gorleben-Bank fand in einem kleinen Teilbecken des ehemaligen Zechsteinmeeres statt, da der Horizont nur im Bereich der näheren Umgebung des Salzstocks Gorleben bekannt ist. Anhand der Gehalte der Spurenelemente (Brom und Strontium) konnte nachgewiesen werden, dass die liegenden Steinsalzschichten der Gorleben-Bank als Folge einer ungestörten Eindunstung von Meerwasser entstanden sind. An der Gorleben-Bank fällt der Bromgehalt im Halit stark ab. Dieser Befund spricht für einen zechsteinzeitlichen Zufluss von Meerwasser in das Teilbecken, welcher zu einer Verdünnung des dort vorhandenen, stark eingedunsteten Meerwassers führte. Durch die danach wieder einsetzende Eindunstung kam es zur Anlage des Leithorizontes. Die Gorleben-Bank-Zonen II, III, V bis VII sind sedimentär entstanden (Abb. 1). Die Zone II ist ein Rückstandssediment, das in Folge des Meerwasserzuflusses durch partielle Auflösung eines zuvor abgelagerten Kaliflözes entstanden ist. Über Zone II folgt die Tonlage, welche eingeweht oder eingeschwemmt wurde. Die Salzgesteine der Zonen V bis VII sind durch die danach wieder einsetzende Eindunstung des verdünnten Meerwassers sedimentiert. Während der Salzstockbildung entstanden die Zonen I und IV (Abb. 1). Die immer im Bereich der Tonlage ausgebildete Bewegungszone (Zone IV) wurde bei der Auffaltung der Schichten angelegt. Dabei drangen Lösungen von der Bewegungszone bevorzugt in die liegenden Steinsalzschichten ein. Es kam zur Bildung von sekundären Sulfaten, die die Zone I charakterisieren.

Die Auswertung der in der Gorleben-Bank angetroffenen Lösungs- und Gasvorkommen ergab, dass diese zum einen an den Leithorizont selbst und zum anderen an sekundär verheilte Klüfte und Umkristallisationsbereiche im unmittelbaren Umfeld gebunden sind. Die Vorkommen sind mengenmäßig begrenzt und befinden sich in abgeschlossenen Reservoiren unter dem Druck des überlagernden Gesteins. Im erkundeten Salzstockbereich konnten für die Gorleben-Bank auf kürzeste Entfernung primär-sedimentäre Mächtigkeitsschwankungen von 3,5 bis 70 cm nach-gewiesen werden. Die Tonlage (Zone III) ist eine Schwächezone. Während der Auffaltung zerriss, in Abhängigkeit von der Mächtigkeit der geschichteten Anhydritlage (Zone V bis VI), der Schichtverband durch Spannungsdifferenzen. Hierbei entstand die Bewegungszone (Zone IV), welche immer schichtparallel in der Gorleben-Bank verläuft (Abb. 1 u. 2). Häufig vorkommende Striemungen (Harnische) auf den Scherflächen der Bewegungszone zeugen von schichtparallelen Ausgleichsbewegungen zwischen dem Unteren und Oberen Orangesalz. Diese können bis zu mehrere Zehner-Meter betragen haben (Abb. 3). Ab einer Mächtigkeit der geschichteten Anhydritlage (Zone V bis VI) von über ca. 6 cm kam es im Laufe der Salzstockbildung in der Bewegungszone zur Spaltenbildung mit Öffnungsweiten von bis zu 34 cm (Abb. 2). Diese Spalten waren sowohl eine Falle als auch ein Speichermedium der Lösungen und Gase. Zudem wirkte die Bewegungszone durch ihre laterale Beständigkeit als Lösungs- und Gasmigrationsbahn, wodurch Lösungen und Gase auch im unmittelbaren Umfeld verteilt wurden. Die bislang im Bereich der Gorleben-Bank aufgefangene Lösungsmenge betrug maximal ca. 80 400 Liter. Die zugetretenen Gasmengen erreichten eine Größenordnung von mehreren Zehner Kubikmetern. Aus den während der Salzstockentstehung eingedrungenen bzw. migrierten Lösungen wurden Halit, Carnallit, Sylvin, Polyhalit, Anhydrit, Kieserit, Cölestin und Pyrit in Hohlräumen ausgeschieden, die dadurch größtenteils verheilten. Bei einer Gesamtmächtigkeit der Gorleben-Bank von nur wenigen Zentimetern fehlt die Bewegungszone bzw. sie ist dann nur wenige Millimeter mächtig (Abb. 2). In diesen Fällen sind Lösungs- und Gaszutritte nicht zu erwarten.

Die analysierten Lösungen aus Flüssigkeitseinschlüssen in sekundär gebildeten Hali-ten der Gorleben-Bank konnten aufgrund der Gehalte an Hauptkomponenten und Spurenelementen als salzstockinterne Lösungen identifiziert werden. Die genetische Modellierung der Lösungen ergab, dass es sich um Reaktionslösungen aus den stratigraphischen Einheiten Grauer Salzton bis Hauptanhydrit des Zechstein 3, um Lösungen aus dem Kaliflöz Staßfurt des Zechstein 2 sowie um Restlösungen des eingedunsteten Meerwassers der Zechsteinzeit bzw. um Mischungen der genannten Lösungen handelt.

Fazit: Die Gorleben-Bank ist nur dann lösungs- und gasführend, wenn dieMächtigkeit der geschichteten Anhydritlage (Zone V bis VI) mehr als ca. 6 cm beträgt.

Weitere Informationen:
Bundesanstalt für Geowissenschaften und Rohstoffe


Stilleweg 2, D - 30655 Hannover
Dr. Günther Bäuerle
Tel. 0511/643 2424/ Fax: +49(0)511 8433694/ E-Mail: g.baeuerle@bgr.de

Jochen Brinkmann |

Weitere Berichte zu: Anhydritlage Bewegungszone Gasvorkommen Meerwasser Mächtigkeit Salzstock Zone

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Industrie 4.0 im Fräsprozess: Geringere Schwingungen durch aktive Dämpfung und angepasste Drehzahlen
17.06.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht Starre Bindungen für neue Smartphone-Datenspeicher
14.06.2019 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Die verborgene Struktur des Periodensystems

17.06.2019 | Biowissenschaften Chemie

Stabilität und Mobilität: Zwei Flüssigkeiten sind der Schlüssel

17.06.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics