Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höchste 3D-Auflösung für sichere Höhenflüge

25.04.2008
Einzigartige CT-Systemkombination zur 3D-Analyse von Hochleistungswerkstoffen am Deutschen Zentrum für Luft- und Raumfahrt
Das Institut für Bauweisen- und Konstruktionsforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Stuttgart hat zwei Computertomographie-Anlagen (CT) von phoe-nix|x-ray in Betrieb genommen, die in dieser Kombination weltweit einzigartige Möglichkeiten der zerstörungs-freien 3D-Analyse von Hochleistungs-Verbundwerkstoffen bieten. Mit ihrer Hilfe lässt sich die innere Struktur auch komplexer Bauteile und Strukturen zerstörungsfrei untersuchen, um die hohen Qualitäts- und Sicherheitsstandards der Werkstoffe für die nächste Generation von Luft- und Raumfahrzeugen zu erfüllen.

Um weitere Gewichtseinsparungen zu erzielen, bestimmen neue Hochleistungsstrukturen unter Verwendung von Faserverbundwerkstoffen mit polymeren und keramischen Komponenten die Weiterentwicklung von Luft- und Raumfahrt. Mit solchen Werkstoffen stoßen die Stuttgarter DLR-Forscher in technologische Grenzbereiche vor. Um das Verhalten derartiger Werkstoffstrukturen hinsichtlich Lebensdauer und Sicherheit unter extremen Belastungen zu testen, spielen zerstörungsfreie Prüfmethoden eine wesentliche Rolle. „Mit der Möglichkeit zur CT-Analyse werden die zerstörungsfreien Prüfmethoden des Instituts durch eine Schlüsseltechnologie ergänzt, die sich in der Qualitätssicherung, der exakten, rekonstruierenden Abbildung von Bauteilen und der Entwicklung von neuen Strukturen immer mehr durchsetzt,“ erläutert Institutsleiter Prof. Dr. Heinz Voggenreiter und ergänzt: „Es gibt kein anderes Verfahren, mit dem man einen Spaziergang durch das Material machen könnte.“
Selbst komplexe Strukturen, die sich bei einer Durchstrahlungs-Untersuchung mittels zweidimensionaler Rönt-genmikroskopie überlagern würden, lassen sich mit Hilfe der 3D Computertomographie zweifelsfrei schichtweise analysieren. Jeder Unterschied innerhalb des Untersuchungsobjektes bezüglich Materialzu-sammensetzung, Dichte oder Porosität, der sich auf die Absorption der Röntgenstrahlung auswirkt, kann im 3D-Volumenbild visualisiert und analysiert werden. Dies macht exakte Aussagen über die räumliche Verteilung unterschiedlicher Stoffe, die Materialdichte oder die Lage von Fasern möglich, ohne das Untersuchungsobjekt zu zerstören. Auch im Gefüge auftretende Defekte wie Risse, Poren oder Lunker können nicht nur visualisiert, sondern beispielsweise auch bezüglich ihres Volumens vermessen werden.

Für derartige Analysen verfügt das Institut nun über zwei CT-Systeme von phoenix|x-ray, die sich in idealer Weise ergänzen. Bei beiden Anlagen garantieren eine granitbasierte Präzisionsmanipulation dauerhaft stabile Aufnahmebedingungen und ein hochauflösender Digitaldetektor mit dreifacher Messbereichserweiterung hohe Auflösungen auch bei größeren Proben. Zahlreiche Softwaremodule beispielsweise zur Reduzierung prinzipbe-dingter Artefakte sorgen für eine bestmögliche Qualität des 3D Volumens. Die CT-Großanlage „v|tome|x l 450" erlaubt die dreidimensionale Untersuchung komplex geformter Bauteile und großer struktureller Baugruppen mit einem scannbaren Durchmesser bis zu 800 mm. Der Tomograph verfügt über zwei Röntgenröhren ver-schiedener Bauart: Die 450 kV Makrofokus-Röntgenröhre kann mit ihrer hohen Leistung auch massive Metallbauteile durchstrahlen. Demgegenüber bietet die 240 kV Mikrofokus-Röntgenröhre die Möglichkeit, komplexe Bauteile aus Kunststoff, Keramik, Leichtmetall und Faserverbundwerkstoffen mit einer Auflösung von <2 µm auf ihre innere Struktur und eventuelle Fehlstellen hin zu untersuchen.

Eine detaillierte, zerstörungsfreie Untersuchung an kleinsten elektronischen Bauelementen und Materialproben erlaubt das kompakte Labor-CT-System nanotom®. Seine 180 kV high-power nanofocus™-Röntgenröhre mit ihrem extrem kleinen Brennfleckdurchmesser kann auch bei sehr hohen Vergrößerungen ein scharfes Abbild der inneren Struktur des zu untersuchenden Werkstoffs erzeugen. Mit Voxelauflösungen kleiner als 500 Nano-meter dringt das nanotom® in Bereiche vor, die bisher teurer und aufwändiger Synchrotron-Technologie vorbehalten waren. Dies erklärt seine Attraktivität gerade im Bereich der Elektronik und Materialforschung – so verfügt das DLR auch an seinem Hauptsitz in Köln über ein weiteres nanotom®.

Auf der diesjährigen Control in Stuttgart hat phoenix|x-ray das nanotom® und die Möglichkeiten, die die hochauf-lösende Computertomographie für das Dimensionelle Messen bietet vorgestellt.

Beide phoenix|x-ray CT-Systeme im Überblick:

v|tome|x l 450
Röntgenröhren:
240 kV Mikrofokus +
450 kV Makrofokus

Flächendetektor 2048 x 2048 Pixel à 200 µm (16 Bit)
Min. Voxelgröße < 2 µm
Erfassbarer Bauteilbereich (3D-CT) Ø 800 mm, H 1000 mm
Max. Bauteilgewicht 100 kg

nanotom®
Röntgenröhren 180 kV high-power nanofocus™
Flächendetektor 2300 x 2300 Pixel à 50 µm (12 Bit)
Min. Voxelgröße < 500 nm (0,5 µm)
Erfassbarer Bauteilbereich (3D-CT)Ø 120 mm, H 150 mm
Max. Bauteilgewicht 1 kg


Über phoenix|x-ray Systems + Services:
phoenix|x-ray ist ein führender Hersteller von hochauflösenden 2D-Röntgeninspektions-Systemen und 3D-Computertomographen. Das Unternehmen wurde 1999 gegründet und beschäftigt heute weltweit über 100 Mitarbeiter. Am Hauptsitz in Wunstorf bei Hannover befindet sich neben der Forschung und Entwicklung auch die gesamte Röhren- und Anlagenfertigung. Applikations- und Dienstleistungszentren von phoenix|x-ray befinden sich in Stuttgart, München, St. Petersburg (USA) und Manila (Philippinen); weitere in Frankreich, den USA und China werden in den kommenden Monaten eröffnet. Als „Center of Excellence“ für CT sowie Mikroelektronik- und materialwissenschaftliche Anwendungen ist phoenix|x-ray Teil von GE Sensing & Inspection Technologies.

Pressekontakt:
phoenix|x-ray Systems + Services GmbH
Marketing / Kommunikation | Beate Prüß
Niels-Bohr-Str. 7 | DE- 31515 Wunstorf
Tel: +49 5031.172-0 | Fax: +49 5031.172-299
bpruess@phoenix-xray.com

Beate Pruess | phoenix|x-ray
Weitere Informationen:
http://www.phoenix-xray.com

Weitere Berichte zu: Raumfahrt

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer
19.02.2020 | Universität Stuttgart

nachricht Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter
19.02.2020 | Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung IOSB

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics