Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Arbeitsspeicher mit Langzeitgedächtnis

14.06.2002


Abb. 1: Querschnitt des Schichtaufbaus und der Elektrodenanordnung auf einem Silizium-Wafer. Im Bereich der Lanthan-Wismut-Titan-Oxid-Schicht zwischen den beiden Elektroden sind ein Farbmodell der Kristallgitterstruktur des La0,75Bi3,25Ti4O12 sowie eine hochauflösende elektronenmikroskopische Abbildung des Kristallgitters zu sehen. Die im Modell als Kügelchen dargestellten Atome sind farblich gekennzeichnet: Wismut und Lanthan - gelb; Titan - blau, Sauerstoff - rot. Die blauen Vierecke stehen für TiO6-Gruppen. Die Übereinstimmung der Lage der Atome im Modell mit dunklen (La, Bi, Ti) bzw. hellen (Sauerstoff) Punkten in der elektronenmikroskopischen Aufnahme verdeutlicht die Perfektion der gewachsenen Lanthan-Wismut-Titan-Oxid-Schicht. Der rote Pfeil bezeichnet die Richtung der remanenten Polarisation Pr, deren Ausrichtung nach oben bzw. unten dem zu speichernden Binärsignal 0 bzw. 1 entspricht.
Grafik: Max-Planck-Institut für Mikrostrukturphysik


Abb. 2: Hochauflösende elektronenmikroskopische Aufnahme einer perfekt gewachsenen Lanthan-Wismut-Titan-Oxid-Schicht mit a-Achsen-Orientierung im Querschnitt. Der Pfeil oben links entspricht dem roten Pfeil in Abbildung 1.

Grafik: Max-Planck-Institut für Mikrostrukturphysik


Forscher des Max-Planck-Instituts für Mikrostrukturphysik gelingt Durchbruch für die Entwicklung der nächsten Generation von Gigabit-Computerspeichern


Im weltweiten Bemühen um neue Computer-Arbeitsspeicher mit Langzeitgedächtnis - so genannte non-volatile random access memories (NV-RAMs) oder "nichtflüchtige RAMs" - haben Wissenschaftler am Max-Planck-Institut für Mikrostrukturphysik in Halle (Saale) einen wichtigen Durchbruch geschafft: Ihnen ist es jetzt erstmals gelungen, dünne Schichten aus dem ferroelektrischen Material Lanthan-Wismut-Titan-Oxid auf Silizium-Wafern in einer besonders günstigen Kristallorientierung aufzubringen und damit die Grundlage zu schaffen für Computerchips mit einem sehr großen Speichervermögen pro Quadratzentimeter (Science, 14. Juni 2002).

Die Arbeitsspeicher auch der neuesten Personalcomputer und Notebooks - die dynamic random access memories (DRAMs) - haben nur ein extrem kurzes Gedächtnis, das einige Hundert Male in der Sekunde elektronisch aufgefrischt werden muss. Deshalb gehen alle auf dem Bildschirm gezeigten Informationen sofort verloren, sobald der Computer von der Stromversorgung getrennt wird. Nach dem Wiedereinschalten müssen - beim Booten - alle Informationen wieder mühsam von der Festplatte geladen werden (sofern sie zuvor rechtzeitig gespeichert worden waren). Das ist ein zeitaufwändiger und lästiger Prozess. Nichtflüchtige Festkörperspeicher sind deshalb heute eines der interessantesten Forschungs- und Entwicklungsziele in der Halbleitertechnologie. Sie sollen die einmal eingespeicherte Information nicht wieder verlieren und damit das in den dynamischen Festkörperspeichern der integrierten Mikroelektronik (DRAMs) notwendige ständige Wiederauffrischen der Information überflüssig machen. Auch das Booten eines PC wäre dann nicht mehr nötig.


Die aussichtsreichsten nichtflüchtigen Speicherbausteine - die magnetic random access memories (MRAMs) und ferroelectric random access memories (FRAMs) - beruhen auf ferromagnetischen und ferroelektrischen Materialien. Um solche nichtflüchtigen Speicherbausteine in die Silizium-Mikroelektronik integrieren zu können, müssen sie als dünne Schichten auf Silizium-Wafern hergestellt werden. Doch einem Einsatz solcher nichtflüchtigen Speicherbausteine mit Speicherkapazitäten im Gigabit-Bereich stehen derzeit noch eine Reihe von Problemen im Wege, nach deren Lösung Festkörperphysiker weltweit intensiv forschen.

Eines der aussichtsreichsten Materialien für nichtflüchtige Speicherbausteine aus ferroelektrischen dünnen Schichten ist das Lanthan-Wismut-Titan-Oxid La0,75Bi3,25Ti4O12. Bisher war es jedoch nicht gelungen, dieses Material als dünne Schicht so auf Silizium-Wafern abzuscheiden, dass die guten Speichereigenschaften des Materials auch in der dünnen Schicht erhalten blieben. Das liegt daran, dass diese Schichten stark dazu neigen, in einer für die Anwendung "falschen" Kristallorientierung zu wachsen. Die besonderen Speichereigenschaften sind nämlich an eine bestimmte Kristallorientierung gebunden, die so genannte a-Achsen-Orientierung, die bisher in dünnen Schichten nicht verwirklicht werden konnte.

Einer Arbeitsgruppe des Max-Planck-Instituts für Mikrostrukturphysik in Halle (Saale) um Dr. Dietrich Hesse und Dr. Ho Nyung Lee ist es nun gelungen, einen Weg zu finden, auf Silizium-Wafern dünne Lanthan-Wismut-Titan-Oxid-Schichten herzustellen, die zu 99 % über die gewünschte a-Achsen-Orientierung verfügen. Dieser Erfolg gelang ihnen vor allem durch die Kombination einer 60 Nanometer (1 Nanometer = 1 Millionstel Millimeter) dicken Pufferschicht aus Yttrium-Zirkon-Oxid mit einer darüber befindlichen, elastisch gedehnten, nur 10 Nanometer dünnen Elektrodenschicht aus Strontium-Ruthenium-Oxid. Darüber hinaus verwendeten die Wissenschaftler bei der Herstellung der Schichten mit einem Laserverfahren einen besonders hohen Sauerstoffdruck, der für die richtige chemische Zusammensetzung dieser Schichten sorgt. In den derart erzeugten Dünnschichten konnten die Forscher nachweisen, dass diese dank der erreichten 99%-igen Kristallorientierung tatsächlich über die gewünschten Speichereigenschaften verfügten. Diese werden durch zwei physikalische Größen beschrieben, die "remanente Polarisation" - sie beschreibt die Größe des möglichen Speichersignals als gespeicherte Ladung pro Flächeneinheit, und die "Ermüdungsfestigkeit" - die Auskunft über die Langzeitstabilität der Speicherschicht gibt. Die Ermüdungsfestigkeit wurde in Langzeitexperimenten geprüft. Sie gibt die prozentuale Abnahme der remanenten Polarisation nach einer bestimmten Zahl von Lese-Schreib-Zyklen wieder.

Bei der remanenten Polarisation haben die Hallenser Wissenschaftler mit den a-Achsen-orientierten Lanthan-Wismut-Titan-Oxid-Schichten den weltweit größten für Schichten dieser Art auf Siliziumsubstrat erreichten Wert erzielt - 32 Mikrocoulomb pro Quadratzentimeter. Die bisher erreichten Werte lagen wegen der deutlich schlechteren Kristallorientierung um wenigstens 10 Mikrocoulomb pro Quadratzentimeter niedriger. Bei der Ermüdungsfestigkeit zeigen die bisher durchgeführten Langzeitexperimente, dass die remanente Polarisation nach 10 Milliarden (109) Lese-Schreib-Zyklen lediglich um etwa 9 Prozent abnimmt - ein guter Wert angesichts der durch die große remanente Polarisation gegebenen hohen Speicherkapazität.

Prof. Gösele, Direktor am Max-Planck-Institut für Mikrostrukturphysik, meint dazu: "Dank der perfekten Kristallorientierung erfüllen diese dünnen Schichten alle unsere Erwartungen. Die erfolgreiche Herstellung von a-Achsen-orientierten Schichten ermöglicht es nun, ihre Eigenschaften gezielt zu untersuchen und für ihre künftige Nutzung als nichtflüchtige Speicherschichten in der Mikroelektronik zu optimieren."

Dieses Projekt wurde durch die Max-Planck-Gesellschaft sowie durch die Deutsche Forschungsgemeinschaft gefördert.


Weitere Informationen erhalten Sie von:

Priv.-Doz. Dr. Dietrich Hesse
Max-Planck-Institut für Mikrostrukturphysik
Weinberg 2, D-06120 Halle/Saale, Germany
Tel. 03 45 - 55 82 - 7 41
Fax 03 45 - 55 11 - 2 23
E-Mail: hesse@mpi-halle.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Berichte zu: Mikrostrukturphysik Polarisation Schicht Speicherbaustein

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Künstliche Intelligenz für die Wissensarbeit
20.11.2018 | FOKUS - Fraunhofer-Institut für Offene Kommunikationssysteme

nachricht Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden
19.11.2018 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics