Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atom-Manipulationen spielerisch entdecken

08.07.2019

Online-Simulationsspiel macht Graphenforschung zugänglich

Mithilfe eines hochmodernen Elektronenmikroskops kann das Team um Toma Susi an der Uni Wien stark gebundene Materialien Atom für Atom genau manipulieren. Die Messinstrumente des UltraSTEM sind vollständig computergesteuert, so dass eine Simulation die Arbeitsweise der ForscherInnen realitätsgetreu wiedergeben kann.


Ein Elektronenstrahl kann ein benachbartes Siliziumatom dazu bringen, an die Stelle zu springen, auf die der Strahl gerichtet war.

© Toma Susi/Universität Wien


Ein Screenshot der Spielanleitung des Atom Tractor Beam-Simulationsspiels.

© Toma Susi/Universität Wien

Ein eigens entwickeltes Simulationsspiel, das im Technischen Museum Wien in der Sonderausstellung „Arbeit & Produktion“ zu sehen ist, wird jetzt zusammen mit den neuesten Forschungsergebnissen zur Manipulation von Silizium-Verunreinigungen in einwandigen Kohlenstoffnanoröhren auch online veröffentlicht.

Elektronenmikroskope ermöglichen eine erheblich größere Auflösung als optische Mikroskope. Optische Mikroskope können mithilfe von sichtbarem Licht Objekte bis zu einem tausendstel Millimeter abbilden.

Elektronenmikroskope verwenden hingegen Elektronenstahlen und können somit viel kleinere Objekte bis hin zu einzelnen Atomen wie z.B. Silizium-Verunreinigungen in einem Graphengitter abbilden.

Das Rasterdurchstrahlungselektronenmikroskop Nion UltraSTEM der Universität Wien ermöglicht eine 50.000.000-fache Vergrößerung und ist vollständig computergesteuert. Der Bildkontrast hängt davon ab, wie stark die Elektronen an jedem Ort gestreut werden.

Dies wird wiederum durch die Ladung des Kerns bestimmt, wobei Silizium mehr Protonen als Kohlenstoff aufweist. So können wir direkt sehen, wo sich die Verunreinigungen befinden.

Zusätzlich zur Bildgebung kann der fokussierte Elektronenstrahl des Mikroskops zum Bewegen der Atome verwendet werden. Jedes Elektron dieses Strahls hat eine geringe Chance, vom Kern des anvisierten Atoms zurückgestreut zu werden. Dadurch erhält, wie frühere Ergebnisse der Forschungsgruppe um Toma Susi zeigen, das Atom einen kleinen Stoß in die entgegengesetzte Richtung.

Der Elektronenstrahl scannt Zeile für Zeile über eine Graphenprobe und lässt dabei die Stellen der Kohlenstoffatome im Gitter als auch die helleren Silizium-Verunreinigungen erkennen. In der Praxis wird der Elektronenstrahl durch Bewegen eines Cursors auf einem Computerbildschirm gelenkt, der die Mikroskop-Elektronik steuert.

"Tatsächlich spielen wir also ein Computerspiel, um unsere Forschung durchzuführen", erklärt Susi. Er fährt fort: "Ich habe viele Spiele gespielt, als ich jünger war, und ich bemerke, dass ich schneller bin als einige meiner jüngeren Kollegen, die eher an Touchscreens gewöhnt sind!"

Das Simulationsspiel ist Teil der Sonderausstellung weiter_gedacht_„Arbeit & Produktion“ im Technischen Museum Wien, die im vergangenen November eröffnet wurde. Diese enthält auch typische in der Forschung verwendete Proben sowie Informationen zur zugrundeliegenden Physik.

Für ein noch größeres Publikum startet das Team eine Website mit dem gleichen Inhalt, einschließlich einer browserbasierten Version des Simulationsspiels "Atom Tractor Beam". Der Name ist vom Science-Fiction-Konzept eines anziehenden Energiestrahls inspiriert, der durch Star Trek populär gemacht wurde.

"Der Name ist angebracht, da sich die Silizium-Verunreinigungen an die Stelle bewegen, auf die der Cursor zeigt, als ob sie vom Elektronenstrahl angezogen würden", schließt Susi.

Gleichzeitig mit dem Start der Website berichtet das Team in einem von "Advanced Functional Materials" veröffentlichten Artikel über die neuesten Forschungsergebnisse im Bereich der Atom-Manipulation.

In dieser Arbeit demonstriert das Team, dass Silizium-Verunreinigungen, die bisher in Graphen untersucht wurden, auch in einem neuen Material, nämlich einwandigen Kohlenstoffnanoröhren, kontrolliert manipuliert werden können. Da es sich um begrenzte eindimensionale Strukturen handelt, kann dieser Fortschritt neue Arten regelbarer elektronischer Geräte ermöglichen.

Das Wissenschaftskommunikationsprojekt wurde von der Wirtschaftsagentur Wien unterstützt. Die wissenschaftliche Arbeit wurde durch Finanzierung des European Research Council (ERC) und des Fonds zur wissenschaftlichen Forschung (FWF) möglich gemacht.

Publikation in Advanced Functional Materials:
Electron‐Beam Manipulation of Silicon Impurities in Single‐Walled Carbon Nanotubes: Kimmo Mustonen, Alexander Markevich, Mukesh Tripathi, Heena Inani, Er-Xiong Ding, Aqeel Hussain, Clemens Mangler, Esko I. Kauppinen, Jani Kotakoski, and Toma Susi. Advanced Functional Materials (online).
DOI: 10.1002/adfm.201901327

Dieser Artikel ist als Open Access-Publikation abrufbar.

Wissenschaftliche Ansprechpartner:

Ass.-Prof. Dr. Toma Susi
Physik Nanostrukturierter Materialien Fakultät für Physik
Universität Wien
1090 - Wien, Boltzmanngasse 5
+43-1-4277-728 55
toma.susi@univie.ac.at

Originalpublikation:

https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201901327

Weitere Informationen:

https://www.univie.ac.at/tractorbeam
https://www.technischesmuseum.at/ausstellung/arbeit-produktion

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Sicherheitsanforderungen für Unternehmen steigen – so sieht eine moderne IT-Sicherheitsstrategie aus!
14.02.2020 | businessAD

nachricht Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar
13.02.2020 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics