Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Analog-Digital-Umwandlung mit sehr hohen Datenraten

30.09.2016

Neues Verfahren ermöglicht eine optische Abtastung ohne optische Quelle

Die Datenströme im Internet nehmen mit jeder neuen Anwendung zu. Damit sie überhaupt erst übertragen werden können, werden analoge Signale in digitale Signale umgewandelt. Wie groß die Datenströme werden können, wird dabei entscheidend vom Umwandlungsverfahren bestimmt.


Die THz-Photonics group mit dem Analog-Digital-Wandler: Prof. Thomas Schneider und sein Team vom Institut für Hochfrequenztechnik der TU Braunschweig.

TU Braunschweig, frei zur Veröffentlichung

Die THz-Photonics group von Prof. Thomas Schneider an der Technischen Universität Braunschweig hat nun eine Methode entwickelt, mit der Datenraten in der Größenordnung von mehreren Terabit je Sekunde umgewandelt werden können. Ein Terabit pro Sekunde entspricht der Übertragung von 130.000 bis 230.000 Videos in HD-Qualität zur gleichen Zeit.

Der THz-Photonics group ist es gelungen, eine völlig neue Idee der Abtastung analoger Signale zu entwickeln und umzusetzen. Alle bisher eingesetzten Abtaster multiplizieren das analoge Zeitsignal mit Folgen von sehr kurzen Impulsen. Bei elektronischen Abtastern wird das Signal mit der Torfunktion, eine Rechteckfolge des Schaltkreises, multipliziert. Bei optischen Abtastern findet eine direkte Multiplikation zwischen dem Signal und zeitlich kurzen Laserpulsen in einem nichtlinearen Kristall oder einer nichtlinearen Faser statt.

Nach den Regeln der so genannten Fouriertransformation entspricht eine Multiplikation im Zeitbereich einer Faltung im Frequenzbereich. Dementsprechend basiert die neue Methode der Braunschweiger THz-Photonics group auf einer Faltung des Signalspektrums mit einem Frequenzkamm.

Auch wenn die zugrunde liegende Mathematik relativ kompliziert erscheine, erklärt Prof. Schneider, so sei die praktische Umsetzung der Methode verhältnismäßig einfach. Ganz im Gegensatz zur Elektronik lassen sich schon mit geringem Aufwand sehr hohe Datenraten abtasten. Außerdem lässt sich die Methode auf einem Silizium-Photonik Chip auf kleinstem Raum integrieren und alle Parameter der Abtastung lassen sich von außen durch elektrische Signale steuern.

Erzielt wurden die Forschungsergebnisse mit Hilfe von Berufungsmittelen von Prof. Schneider. Die Wissenschaftlerinnen und Wissenschaftler der THz-Photonics group arbeiten derzeit an einer Integration der Methode auf der Basis der „silicon-on-insulator“ (SOI)-Technologie, bei der mit Silizium dasselbe Material und dieselbe Technologie wie bei Computerchips verwendet wird.

Hintergrund Signalabtastung bei der Analog-Digital-Umwandlung

Die Abtastung ist der erste Schritt, um ein analoges Signal in ein digitales zu verwandeln. Dieses digitale Signal kann dann mit Computern verarbeitet oder über Glasfasern und mit Funkwellen übertragen werden. Ein Computer, das Internet oder auch Smartphones können nur einzelne Messgrößen, die in festen Zeitabständen aufgenommen werden, verarbeiten oder übertragen. Diese periodische Messung eines bestimmten Wertes an einem bestimmten Ort nennt man Abtastung. Ein Schaltkreis öffnet für eine fest definierte Zeit ein Tor zu einem Messgerät. Dementsprechend wird der Wert nur in der Zeit der Toröffnung abgenommen. Bislang wird die Abtastung vor allem mit elektronischen Schaltungen durchgeführt. Das reicht aus, so lange Werte mit relativ geringer Datenrate abgetastet werden sollen. In den weltweit verlegten Glasfasernetzen des Internet steigt die Datenrate aber kontinuierlich an.

Die Elektronik, die dort zum Einsatz kommt, arbeitet heute bereits an der Grenze ihrer Möglichkeiten. Die verwendeten Schaltkreise benötigen sehr viel Energie, die fast vollständig in Wärme umgewandelt wird. Um diese Wärme wieder abzuführen, wird zusätzliche Energie benötigt. Eine weitere Steigerung der Datenraten wäre dementsprechend mit einem großen Aufwand verbunden. Optische Abtaster haben hingegen den Vorteil, dass sie sehr große Bandbreiten im Terahertz-Bereich (1 THz = 1012 Hertz) bieten und damit sehr große Datenraten im Terabit je Sekunde-Bereich verarbeiten können (1 Tbit/s entspricht der Datenrate von mehr als 65.000 UHD-Videos bei Internet-Streamingdiensten).

Zusätzlich muss das optische Signal in einer Glasfaser nicht erst in ein elektrisches Signal gewandelt werden, wie bei elektronischen Abtastern. Allerdings benötigen optische Abtaster eine Quelle, die sehr kurze Pulse mit einer festen und sehr stabilen Wiederholrate liefert. Derartige modengekoppelte Laser sind relativ groß und die Abtastparameter wie Abtastrate und Abtastbandbreite lassen sich nicht einfach verändern. Vor allem lassen sich modengekoppelte Laser nicht auf einem Chip integrieren, wie es mit der von der „THz-Photonics group“ entwickelten Methode gegenwärtig erprobt wird.

Zur Publikation
Stefan Preussler, Gilda Raoof Mehrpoor, Thomas Schneider: Frequency-time coherence for all-optical sampling without optical pulse source, Scientific Reports 2016, DOI:10.1038/Srep34500

Kontakt
Prof. Dr. Thomas Schneider
Technische Universität Braunschweig
Institut für Hochfrequenztechnik
THz-Photonics group
Schleinitzstraße 22
38106 Braunschweig
Tel.: 0531 391-2003
E-Mail: thomas.schneider@ihf.tu-braunschweig.de

www.tu-braunschweig.de/ihf

Weitere Informationen:

https://magazin.tu-braunschweig.de/pi-post/analog-digital-umwandlung-mit-sehr-ho...

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Keine Chance mehr für Datenkraken
16.05.2019 | Karlsruher Institut für Technologie

nachricht Nach Meltdown und Spectre: TU Graz-Forscher entdecken neue Sicherheitslücken
15.05.2019 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

Wie sicher ist autonomes Fahren?

16.05.2019 | Veranstaltungen

Chemie – das gemeinsame Element

16.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Integrierte Zuckermoleküle schonen Zellkulturen

17.05.2019 | Biowissenschaften Chemie

Erstmals Einsatz von gefäßschützendem Antikörper bei kardiogenem Schock

17.05.2019 | Biowissenschaften Chemie

Additive Maschinen lernen Superlegierungen kennen

17.05.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics