Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Use less water, producing energy and fertilizer at the same time

18.04.2012
Water is a valuable resource. New technologies are making it easier to handle drinking water responsibly, purify wastewater effectively and even recover biogas and fertilizer. Fraunhofer researchers will be showing how this is done at the Hannover Fair (23 - 27 April) in the House of Sustainability (Hall 2).

Clean drinking water and basic sanitation are human rights. Yet almost 780 million of the world‘s population still have no access to drinking water and some 2.6 billion people live without sanitary facilities. Water, though, is also an important economic factor: Today, agricultural and manufacturing businesses already use up more than four fifths of this precious commodity.

And the demand for water continues to rise. The Organization for Economic Cooperation and Development (OECD) is expecting that by 2050, global water consumption will have risen by more than half. Some 40 percent of the world‘s population will then be living in regions with extreme water shortages - 2.3 billion people more than today.

We have, to date, been wasteful in our use of this valuable resource. In Germany, each and every individual consumes around 120 liters of water per day - they drink only three. Another third is flushed down the toilet. But in some regions of the world, clean water is much too precious to be wasted transporting excrement. New technologies are allowing us to significantly reduce drinking water consumption, purify wastewater effectively and even recover biogas and fertilizer. The researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB and System and Innovation Research ISI have developed the solutions as part of the DEUS „Decentral Urban Water Infrastructure Systems“ project.

Treatment of rainwater
Not all water has to be drinking quality - for watering the garden or flushing the toilet, for instance. Using rainwater and treated wash water for personal needs pays off, especially in arid regions. Fraunhofer researchers have developed a modern water treatment plant for this very purpose. It produces germ-free, usable water that satisfies the requirements of the German Drinking Water Regulation (TVO). „The treated rainwater can be used for showering, washing, flushing the toilet and watering the garden“, explains Dr. Dieter Bryniok from the IGB in Stuttgart.
Vacuum sewage systems reduce water consumption
Vacuum sewage is a key building block. The concept drastically reduces water consumption. Vacuum toilets need only about 0.5 to 1 liter of water per flush. By comparison: Conventional toilets use between four and eight liters.

What‘s more, the investment and maintenance costs are lower than those for conventional sewage systems. Domestic wastewater is biologically purified in an anaerobic, high-performance membrane plant. The heart of the system, fully-mixed anaerobic bioreactors, treat the wastewater without aeration or oxygen and the organic constituents are converted into biogas, a mixture of methane and carbon dioxide.

The bioreactors are combined with rotation disk filters. The wastewater is forced through ceramic filter disks. The rotational movement of the ceramic membranes inhibits the formation of covering layers. So the filtration capacity is maintained over a prolonged period. The purified water drains into the filter plant‘s hollow shaft. The pores in the membrane range in size from 60 nanometers and 0.2 micrometers. All larger particles are routed into the bioreactors. Bacteria are also returned to the reactors, which breakdown the organic waste that has been filtered out. The recovered biogas provides power and heat. The entire plant works in the absence of air. The benefit: there‘s no bad odor.

Recovery of biogas and fertilizer
Another special feature of the disposal concept: As well as domestic wastewater, the wastewater purification plant can also process bio kitchen waste. Kitchens are simply equipped with a waste macerator, accommodated below the sink. The system is connected to the domestic wastewater pipes. As more and more organic waste gets into the wastewater, the biogas yield increases. Bio-waste and wastewater produce another by-product: fertilizer. Nitrogen and phosphorous are converted into ammonium and phosphorous salts and can be recovered through the applied membrane technology.

As Bryniok explains, „The water management concept DEUS 21 benefits mainly those regions that still have no water infrastructure with sewage system and central clarification plant, or in which the old infrastructure can no longer be modified to meet the new challenges posed by climate change or de-population.“ „The system is also ideally suited for export to water-scarce areas, because it can be adapted specifically to the needs of dry and semi-arid regions.“

The latest China project
Fraunhofer researchers involved in the „Advanced wastewater treatment in Guangzhou“ project are currently working towards optimizing the DEUS technology in an industrial park in the City of Guangzhou, Guangdong Province to suit the conditions in China.

Further information can be found at: www.deus21.de

Prof. Dr. Dieter Bryniok | Fraunhofer-Gesellschaft
Further information:
http://www.deus21.de
http://www.fraunhofer.de/en/press/research-news/2012/april/Use-less-water-producing-energy-and-fertilizer-at-the-same-time.html

More articles from HANNOVER MESSE:

nachricht Autonomous 3D scanner supports individual manufacturing processes
06.02.2018 | Fraunhofer-Gesellschaft

nachricht Measurement of components in 3D under water
01.04.2015 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

All articles from HANNOVER MESSE >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics