Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Langzeit-EKG für Windanlagen

01.03.2016

Hannover Messe 2016: Sensormanschette überwacht Schweißnähte

Offshore-Windanlagen müssen vieles aushalten – das gilt vor allem für die Fundamente, die im Meeresboden verankert sind. Von Zeit zu Zeit untersuchen Taucher diese Gründungsstrukturen auf Mängel. Mit einer Sensormanschette lassen sich die Kontrollen künftig schneller und einfacher durchführen. Ein solches System präsentieren die Wissenschaftler auf der Hannover-Messe vom 25. bis 29. April 2016 (Halle 2, Stand C16/C22).


© Foto Fraunhofer IKTS

Für Praxistests in der Ostsee haben Forscher einen Proberohrknoten mit zwei Demonstratoren der Sensormanschette ausgerüstet.


© Foto Fraunhofer IKTS

Mit der Sensormanschette ohne Halterung lassen sich Risse in Fundamenten von Offshore-Windanlagen aufspüren.

Die Wellen peitschen gegen die Masten der Offshore-Windanlagen, der Wind rüttelt an den Rotoren. Der Fuß der Anlage – unter Wasser, nahe dem Meeresboden – muss daher starke Beanspruchungen überstehen. Auch aggressives Salzwasser schädigt die Fundamente. In regelmäßigen Abständen begeben sich Taucher hinab in die Tiefe und überprüfen die besonders gefährdeten Schweißnähte an diesen Verankerungen. Sind sie nach wie vor intakt? Oder haben sich Risse oder andere Fehlstellen gebildet, die die Sicherheit gefährden?

Um diese Frage zu beantworten, befreien die Taucher die Schweißnaht zunächst mit einem Hochdruck-Gerät von Bewuchs wie Algen und Muscheln. Anschließend legen sie ein elektromagnetisches Feld an die Schweißnaht an und geben Eisenspäne darauf. Ist irgendwo ein Riss, dringt das Feld verstärkt nach außen – die Eisenspäne lagern sich dort an.

Eine schwierige Arbeit für die Taucher: Sie müssen viele Geräte mit in die Tiefe nehmen, starken Strömungen standhalten und genügend Zeit einplanen, um sich an die jeweiligen Wasserdrücke auf dem Tauchgang zu gewöhnen. Die Inspektion einer Anlage dauert bislang etwa einen Tag.

Automatische Messung mit der Sensormanschette

Künftig kann ein Roboter diese langwierige und mitunter riskante Aufgabe übernehmen – genauer gesagt ein kastenförmiges Remote Operating Vehicle, kurz ROV. Die Basis dafür haben Forscher am Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden gelegt, gemeinsam mit verschiedenen Industriepartnern. »Wir haben eine Sensormanschette entwickelt, mit der sich diese Messungen vereinfachen und künftig automatisiert durchführen lassen«, sagt Andreas Schnabel, Projektmanager am IKTS.

Das System bietet zahlreiche Vorteile. Es ist weitaus genauer als die bisherigen Methoden: Es analysiert beispielsweise auch die Ausmaße und die Tiefe des Risses, was bislang nicht möglich war. Zudem geht die Untersuchung sehr viel schneller vonstatten als die mühselige Handarbeit – bereits nach zehn Minuten ist sie abgeschlossen.

Doch wie funktioniert das System? »Das Herzstück bildet eine Sensormanschette, die um die Schweißnaht gelegt wird und über die Anlagenlebensdauer dort verbleibt«, erläutert Schnabel. Diese Manschette besteht aus zahlreichen Sensorelementen, die in Abständen von fünf bis sieben Zentimetern wie an einer Perlenschnur aufgereiht sind. Für die Messung koppelt zunächst der Taucher ein Handgerät über eine Schnittstelle an die Manschette an und startet die Untersuchung per Knopfdruck.

Künftig soll der Roboter diese Aufgabe übernehmen. Gleichzeitig sorgt das Handgerät über Akkus für die nötige Energie. Das aufwändige Reinigen mittels Hochdruck entfällt. Reihum fungiert nun eines der Sensorelemente als Aktor. Sprich: Es bringt Ultraschallwellen in die Schweißnaht ein, die die gesamte Struktur durchdringen. Befindet sich irgendwo ein Riss, werden die Wellen an dieser Störstelle reflektiert, während sie durch die intakten Bereiche ungehindert hindurchgehen.

Die anderen Sensoren detektieren die Signale und spüren Fehlerstellen auf diese Weise auf. Anschließend dient der nächste Sensor als Aktor. Er überträgt die Daten per Kabel auf das Handlesegerät, das am PC ausgelesen wird. Auf diese Weise erhalten die Forscher Daten, die denen einer Computer-Tomographie beim Arzt ähneln. Der Endanwender, also der Prüfer der Offshore-Anlage, erhält ein Bild der Schweißnaht, auf dem Fehlstellen je nach Relevanz farbig markiert sind.

Erfolgreicher Praxistest in der Ostsee

In einem Vor-Ort-Test im Offshore-Windpark Baltic 1 konnten die Forscher gemeinsam mit ihren Kollegen von Baltic Taucher aus Rostock bereits zeigen, dass das Verfahren funktioniert. Dazu versahen sie ein verzweigtes Metallrohr mit einem 0,9 Millimeter breiten, 45 Millimeter langen und 7 Millimeter tiefen Riss und brachten es auf den Meeresgrund der Ostsee in 18 Metern Tiefe.

Mit Erfolg: Das System konnte den Riss sehr genau detektieren und sowohl seine Länge, seine Höhe als auch seine Tiefe bestimmen. In etwa fünf Jahren könnte das System zertifiziert und per Roboter einsatzbereit sein, hoffen die Forscher. Somit wollen sie die Lebensdauer der Anlagen nachhaltig sichern und die Energiewende unterstützen.

Kontakt

Katrin Schwarz

Fraunhofer-Institut für Keramische Technologien und Systeme IKTS
Winterbergstr. 28
01277 Dresden

Telefon +49 351 2553-7720

Fax +49 351 2554-114

E-Mail senden

Katrin Schwarz | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2016/maerz/langzeit-ekg-fuer-windanlagen.html

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Network Manager mit Topologiedarstellung
05.04.2019 | PHOENIX CONTACT GmbH & Co. KG

nachricht Energieverteilung leicht gemacht
05.04.2019 | PHOENIX CONTACT GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics