Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hannover Messe 2018: Intelligentes Material macht Flugzeuge und Autos aerodynamischer

11.04.2018

Um Energie zu sparen, ist Aerodynamik bei Flugzeugen und Autos wichtig. Techniken, die dies steuern, sind aber immer nur für einen bestimmten Geschwindigkeitsbereich ausgelegt. An einer flexibleren Methode arbeiten Forscher an der Technischen Universität Kaiserslautern (TUK). Sie haben dazu ein „intelligentes Material“ entwickelt, das seine Form dank eines sogenannten Formgedächtnis-Drahts automatisch anpasst. Auch Lüftungs- und Heizungsanlagen sowie die Kühlung bei Sporthelmen ließen sich so einfach steuern. Ihr Material vermarkten sie in ihrem Start-up „CompActive“. Auf der Hannover Messe stellen sie es vom 24. bis 25. April am Stand „Young Tech Enterprises” (Halle 17, Stand B57) vor.

Auf der Suche nach Beute kreisen Adler langsam in der Luft. Dabei sorgen ihre fächerförmig gespreizten Federn an ihren Flügelenden dafür, dass sie bei relativ niedriger Geschwindigkeit möglichst effizient unterwegs sind. Auch bei einem schnellen Sturzflug können sich die Tiere dank ihrer Flügel schnell an die neuen Bedingungen anpassen.


Das neue Material kann zum Beispiel bei Turbulatoren zum Einsatz kommen.

Foto: TUK/Thomas Koziel

So flexibel wie der Adler ist die Luftfahrt noch nicht. Zwar gibt es Techniken, die helfen, die Effizienz zu verbessern. Dazu zählen etwa sogenannte Winglets, eine Art gebogene Verlängerung an den Spitzen der Tragflächen. „Ein weiteres Beispiel sind Turbulatoren“, sagt Dr. Moritz Hübler vom Institut für Verbundwerkstoffe (IVW) an der TUK.

„Dabei handelt es sich um eine Vielzahl kleiner Störflächen, die auf der Flügeloberfläche die Strömung stabilisieren. Sie ermöglichen es dem Piloten, langsamer zu fliegen.“ Allerdings handelt es sich in beiden Fällen nur um starre Bauelemente, die sich nicht automatisch während des Fluges anpassen. „Die Aerodynamik des Flugzeugs ist hier immer nur für bestimmte Geschwindigkeiten ausgelegt“, so Hübler weiter.

Ähnlich flexibel wie der Flügel des Adlers ist hingegen die Technik, an der Hübler und seine Kollegen arbeiten. Sie passt sich etwa automatisch an verschiedene Geschwindigkeiten und Temperaturen an.

Die Forscher setzen hierbei auf Drähte aus einer „Formgedächtnislegierung“, die aus einer Nickel-Titan-Verbindung besteht. „Die Wissenschaft beschreibt damit das Phänomen, dass diese Drähte nach einer Verformung wieder ihre alte Form annehmen“, erläutert Hübler. „Erwärmen sich die Drähte, zum Beispiel mithilfe eines elektrischen Stroms, ziehen sie sich zusammen.“ Aufgebracht sind die Drähte auf eine biegsame Platte aus Verbundwerkstoff. Ähnlich wie bei unserer Muskulatur führt ein Zusammenziehen der Drähte dazu, dass sich das Material krümmt.

„Unser aktives Material benötigt weniger Volumen und hat ein geringeres Gewicht gegenüber herkömmlichen Techniken, die zum Beispiel mit Druckluft oder elektrischen Motoren arbeiten. Es könnte als Modul auch auf vorhandene Bauteile aufgebracht werden“, so Patricia Schweitzer, die ebenfalls am Vorhaben beteiligt ist. „Je nach Anforderung können wir sie in verschiedenen Größen anfertigen.“ Den Materialaufbau haben sich die Wissenschaftler bereits patentieren lassen und entwickeln ihn in ihrem Start-up „CompActive“ zur Marktreife.

Mit diesem „intelligenten Material“ sind viele neue Funktionen denkbar, beispielsweise spalt- und knickfreie Flugzeugklappen, die sich automatisch an die Aerodynamik bei unterschiedlichen Geschwindigkeiten anpassen und damit Energie sparen. In Flugversuchen konnten Forscher des IVW gemeinsam mit Partnern bereits zeigen, dass ihr Material auch bei Turbulatoren zum Einsatz kommen kann: Sie ließen sich einfach per Knopfdruck ausfahren. „Damit sind langsamere, steilere und sicherere Landeanflüge möglich, ohne dass die Effizienz leidet“, sagt Hübler.

Um den Spritverbrauch zu senken, ist auch bei Fahrzeugen ein ähnliches Einsatzgebiet möglich. „Die Technik ließe sich automatisch mittels bereits vorhandener Sensoren für eine jederzeit optimale Aerodynamik nutzen, egal ob man in der Stadt oder auf der Autobahn unterwegs ist“, so Hübler.

Ein weiteres Einsatzfeld sind Lüftungs- und Heizungsanlagen: Erwärmt sich die Luft, sorgt sie automatisch dafür, dass sich das Material verbiegt und sich etwa eine Lüftungsklappe öffnet, damit die Abwärme entweichen kann. Zudem eignet sich die Methode, um herkömmliche Heizungen vor Schmutz zu schützen. „Die Schlitze der Heizkörper benötigt man eigentlich nur wenige Monate im Jahr, damit sich die warme Luft verbreiten kann. Durch die Wärme ließe sich dies steuern und die Heizung wäre über den Großteil des Jahres geschlossen“, sagt Schweitzer. Auch beim Design für neuartige Lampen könnte die Technik Verwendung finden oder bei einem Kühlsystem für Schutzhelme im Sportbereich.

Das Vorhaben des Start-ups wird als „EXIST-Forschungstransfer-Projekt“ vom Bundeswirtschaftsministerium (BMWi) gefördert. Bei ihrer Arbeit werden die Jungunternehmer zudem vom Gründungsbüro der TUK und der Hochschule Kaiserslautern und dem Institut für Verbundwerkstoffe unterstützt. Auf der Hannover Messe präsentiert das vierköpfige Team um Hübler seine Technik.

Fragen beantwortet:
Dr. Moritz Hübler
Institut für Verbundwerkstoffe / CompActive
Tel.: 0631 2017-443
moritz.huebler(at)ivw.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Aerodynamik Bauteile Drähte Energie sparen Turbulator Verbundwerkstoffe

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Hohe Akzeptanz vor Markteinführung - Die Entwicklung des Großschranksystems VX25 von Rittal
24.04.2018 | Rittal GmbH & Co. KG

nachricht Rittal digitalisiert Fertigung - Produktion weltweit nach Industrie 4.0
25.04.2018 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics