Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher wollen Rastersonden-Mikroskop um das Tausendfache beschleunigen

29.03.2010
Ihre Funktionsweise stellen die Wissenschaftler vom 17. bis 24. April auf dem saarländischen Forschungsstand der Hannover Messe (Halle 2, Stand C 44) vor.

Ein Rastersonden-Mikroskop funktioniert ähnlich wie ein Schallplattenspieler. Dort tastet sich eine Nadel an der Rille der Schallplatte lang und bildet die Struktur der Oberfläche ab. Beim Mikroskop übernimmt diese Funktion eine winzige Nadel aus Silizium, die aber das zu untersuchende Objekt nicht direkt berührt.

Über atomare Kräfte, meist Van-der-Waals-Kräfte, werden die Oberflächenstrukturen abgetastet. "Obwohl diese Nadeln der Mikroskope winzig klein sind, stößt man an physikalische Grenzen. Wir haben daher nach einem Bauteil gesucht, das nochmals um den Faktor 1000 kleiner ist als die herkömmlichen Nadeln", erläutert Uwe Hartmann, Professor für Nanostrukturforschung und Nanotechnologie der Universität des Saarlandes. Mit dem so genannten Nanocantilever sollen künftig die Oberflächen viel schneller und mit höherer Präzision abgetastet werden.

Die Arbeitsfrequenzen von herkömmlichen Rastersonden-Mikroskopen liegen bei 100 Kilohertz. "In der Nanotechnologie hat man es aber mit Prozessen zu tun, die im Gigahertz-Frequenzbereich liegen, also bei einer Milliarde Schwingungen pro Sekunde. Schon die Geschwindigkeit, mit der ein Haar wächst, kann sich unter dem Mikroskop als störend erweisen", beschreibt Uwe Hartmann die Dimensionen der Nanoforscher. Mit der Entwicklung seines Teams können künftig tausend Bilder pro Sekunde oder mehr in hoher Empfindlichkeit aufgenommen werden. Das ist eine viel höhere Bildfolge als etwa ein Fernseher anzeigt. Der Detektor, der die Bewegungen des Nanocatilevers misst, ist dichter als eine Lichtwellenlänge über diesem angebracht. Das ist etwa ein fünfhundertstel Haaresbreite. Damit kann eine Probe sehr präzise und schnell abgetastet werden.

Gemeinsam mit mehreren Partnern bauen die Wissenschaftler derzeit einen Prototyp des neuen Rasterkraftmikroskops, für das auch eine Patentanwendung vorgesehen ist. Bis Ende des Jahres soll das Gerät, das mit Standardmaterialien hergestellt werden kann, funktionsfähig sein. Die Forscher suchen jetzt nach einer Firma, die das Mikroskop vermarkten wird. "Auf der Hannover Messe können wir noch kein Exponat zeigen. Wir werden aber in einer dreidimensionalen Visualisierung die neue Funktionsweise des Rastersonden-Mikroskops und die zugrunde liegende Nanotechnologie erläutern", sagt der Saarbrücker Nanoforscher.

Fragen beantwortet:

Prof. Dr. Uwe Hartmann
Lehrstuhl für Nanostrukturforschung und Nanotechnologie
Universität des Saarlandes
Tel. 0681 / 302 3799
Tel. 0511 / 89 497101 (Telefon am Messestand)
E-Mail: u.hartmann@mx.uni-saarland.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-ISDN-Codec. Interviewwünsche bitte an die Pressestelle (0681/302-3610) richten.

Friederike Meyer zu Tittingdorf | idw
Weitere Informationen:
http://www.uni-saarland.de/fak7/hartmann/

Weitere Nachrichten aus der Kategorie HANNOVER MESSE:

nachricht Network Manager mit Topologiedarstellung
05.04.2019 | PHOENIX CONTACT GmbH & Co. KG

nachricht Energieverteilung leicht gemacht
05.04.2019 | PHOENIX CONTACT GmbH & Co. KG

Alle Nachrichten aus der Kategorie: HANNOVER MESSE >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

Mit einem Standard-Kryoelektronenmikroskop erzielen Biochemiker der Martin-Luther-Universität Halle-Wittenberg (MLU) erstaunlich gute Aufnahmen, die mit denen weit teurerer Geräte mithalten können. Es ist ihnen gelungen, die Struktur eines Eisenspeicherproteins fast bis auf Atomebene aufzuklären. Die Ergebnisse wurden in der Fachzeitschrift "PLOS One" veröffentlicht.

Kryoelektronenmikroskopie hat in den vergangenen Jahren entscheidend an Bedeutung gewonnen, besonders um die Struktur von Proteinen aufzuklären. Die Entwickler...

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: Neue Schlankheitstipps für Computerchips

Lange Zeit hat man in der Elektronik etwas Wichtiges vernachlässigt: Wenn man elektronische Bauteile immer kleiner machen will, braucht man dafür auch die passenden Isolator-Materialien.

Immer kleiner und immer kompakter – das ist die Richtung, in die sich Computerchips getrieben von der Industrie entwickeln. Daher gelten sogenannte...

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kryoelektronenmikroskopie: Hochauflösende Bilder mit günstiger Technik

13.07.2020 | Biowissenschaften Chemie

Gesucht: Die nächste Superbatterie

13.07.2020 | Energie und Elektrotechnik

Virtual Reality hilft bei Beurteilung der Mobilität von übermorgen

13.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics