Wie der Arktische Ozean salzig wurde

Blick auf Treib- und Packeis von Bord des deutschen Forschungsschiffes Polarstern, auf dem Weg zum Nordpol. (Foto: Stefan Hendricks)

Der Arktische Ozean war einst ein gigantischer Süßwassersee. Erst als die Landbrücke zwischen Grönland und Schottland weit genug abgesunken war, strömte eine große Menge Salzwasser aus dem Atlantik ein. Wissenschaftler des Alfred-Wegener-Instituts haben nun mit Hilfe eines Klimamodells nachvollzogen, wie dieser Prozess vonstattenging. Dadurch lässt sich die Geburt der Arktischen Zirkulation wie wir sie heute kennen auch erstmalig genauer beschreiben. Die Ergebnisse der Studie erscheinen nun im Fachmagazin Nature Communications.

Jahr für Jahr strömen etwa 3.300 Kubikkilometer Süßwasser in den Arktischen Ozean. Das entspricht zehn Prozent der jährlichen Wassermenge, die alle Flüsse der Welt zusammen in die Ozeane bringen. In dem warmen und feuchten Klima des Eozäns (etwa 56 bis 34 Millionen Jahre vor heute) war der Zufluss von Süßwasser vermutlich sogar noch deutlich größer.

Doch im Gegensatz zu heute gab es in dieser erdgeschichtlichen Periode keinen Wasseraustausch mit den anderen Ozeanen. Der Einstrom von salzhaltigem Atlantik- und Pazifikwasser, der heute vom Pazifischen Ozean über die Beringstraße sowie vom Nordatlantik über die Schwelle des Grönland-Schottland-Rückens den Weg in den Arktischen Ozean findet, war damals nicht möglich, da diese heute unterseeischen Regionen über dem Wasser lagen.

Erst durch das Verschwinden der Landbrücke zwischen Grönland und Schottland konnte eine erste Ozeanpassage entstehen, die die Arktis mit dem Nordatlantik verbindet und einen Wasseraustausch ermöglicht. Wissenschaftler des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) haben nun diese geologischen Veränderungen in einem Klimamodell berücksichtigt und den Einfluss auf das Klima simuliert. Dafür haben sie in ihren Simulationen die Landbrücke bis zu einer Tiefe von 200 Meter schrittweise abgesenkt.

„Dieser tektonische Absenkungsprozess dauerte in der Realität mehrere Millionen Jahre“, sagt Klimawissenschaftler Michael Stärz, Erstautor der Studie. „Interessanterweise traten die größten Veränderungen im Zirkulationsmuster und den Eigenschaften des Arktischen Ozeans jedoch erst auf, als die Absenkung der Landbrücke Tiefen unterhalb von etwa 50 Metern erreichte.“

Diese Schwellwerttiefe entspricht der Mächtigkeit der obersten winddurchmischten Wasserschicht. Sie legt fest, in welcher Tiefe das relativ leichte arktische Oberflächenwasser aufhört und die darunterliegende Schicht des einströmenden Nordatlantikwassers beginnt. „Erst wenn der Ozeanrücken unterhalb der winddurchmischten Schicht liegt, kann das schwerere salzhaltige Nordatlantikwasser relativ ungestört über die Passage in die Arktis einströmen“, erklärt Stärz.

„Nachdem die Öffnung der Ozeanpassage zwischen Grönland und Schottland diese kritische Tiefe überwunden hatte, entstand daraus der Ozean mit Salzgehalten wie wir sie heutzutage von der Arktis kennen.“ Die Entstehung von Ozeanpassagen spielt eine entscheidende Rolle für die globale Klimageschichte. Sie führen zu einer Änderung der ozeanischen Wärmetransporte zwischen den mittleren und polaren Breitengraden.

Unterstützt wird die Annahme eines einst isolierten arktischen Ozeanbeckens auch durch den Fund fossiler Süßwasseralgen aus eozänen Tiefseesedimenten, die im Rahmen einer internationalen Bohrung nahe des Nordpols im Jahr 2004 gewonnen wurden. Die einstige Landbrücke liegt mittlerweile in etwa 500 Metern Wassertiefe und besteht fast ausschließlich aus vulkanischem Basaltgestein. Island ist der einzige Teil, der noch immer über dem Wasser liegt.

Hinweise für Redaktionen:

Die Studie erscheint unter folgendem Titel im Fachmagazin Nature Communications: Michael Stärz, Wilfried Jokat, Gregor Knorr, Gerrit Lohmann: „Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge“ DOI: 10.1038/NCOMMS15681.

Druckbare Bilder des Arktischen Ozeans finden Sie unter: http://multimedia.awi.de

Ihr Ansprechpartner in der Abteilung Kommunikation und Medien ist Sebastian Grote, Tel.: + 49 (0) 471 4831-2006 (E-Mail: sebastian.grote(at)awi.de).

Ihr wissenschaftlicher Ansprechpartner am Alfred-Wegener-Institut ist Dr. Gregor Knorr, Tel.: +49 (0) 471 4831-1769 (E-Mail: gregor.knorr(at)awi.de).

Das Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Media Contact

Ralf Röchert idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.awi.de/

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer