Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Arktische Ozean salzig wurde

06.06.2017

AWI-Forscher modellieren Klimaveränderung durch Absenken des Grönland-Schottland-Rückens

Der Arktische Ozean war einst ein gigantischer Süßwassersee. Erst als die Landbrücke zwischen Grönland und Schottland weit genug abgesunken war, strömte eine große Menge Salzwasser aus dem Atlantik ein. Wissenschaftler des Alfred-Wegener-Instituts haben nun mit Hilfe eines Klimamodells nachvollzogen, wie dieser Prozess vonstattenging. Dadurch lässt sich die Geburt der Arktischen Zirkulation wie wir sie heute kennen auch erstmalig genauer beschreiben. Die Ergebnisse der Studie erscheinen nun im Fachmagazin Nature Communications.


Blick auf Treib- und Packeis von Bord des deutschen Forschungsschiffes Polarstern, auf dem Weg zum Nordpol. (Foto: Stefan Hendricks)

Jahr für Jahr strömen etwa 3.300 Kubikkilometer Süßwasser in den Arktischen Ozean. Das entspricht zehn Prozent der jährlichen Wassermenge, die alle Flüsse der Welt zusammen in die Ozeane bringen. In dem warmen und feuchten Klima des Eozäns (etwa 56 bis 34 Millionen Jahre vor heute) war der Zufluss von Süßwasser vermutlich sogar noch deutlich größer.

Doch im Gegensatz zu heute gab es in dieser erdgeschichtlichen Periode keinen Wasseraustausch mit den anderen Ozeanen. Der Einstrom von salzhaltigem Atlantik- und Pazifikwasser, der heute vom Pazifischen Ozean über die Beringstraße sowie vom Nordatlantik über die Schwelle des Grönland-Schottland-Rückens den Weg in den Arktischen Ozean findet, war damals nicht möglich, da diese heute unterseeischen Regionen über dem Wasser lagen.

Erst durch das Verschwinden der Landbrücke zwischen Grönland und Schottland konnte eine erste Ozeanpassage entstehen, die die Arktis mit dem Nordatlantik verbindet und einen Wasseraustausch ermöglicht. Wissenschaftler des Alfred-Wegener-Instituts, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) haben nun diese geologischen Veränderungen in einem Klimamodell berücksichtigt und den Einfluss auf das Klima simuliert. Dafür haben sie in ihren Simulationen die Landbrücke bis zu einer Tiefe von 200 Meter schrittweise abgesenkt.

„Dieser tektonische Absenkungsprozess dauerte in der Realität mehrere Millionen Jahre“, sagt Klimawissenschaftler Michael Stärz, Erstautor der Studie. „Interessanterweise traten die größten Veränderungen im Zirkulationsmuster und den Eigenschaften des Arktischen Ozeans jedoch erst auf, als die Absenkung der Landbrücke Tiefen unterhalb von etwa 50 Metern erreichte.“

Diese Schwellwerttiefe entspricht der Mächtigkeit der obersten winddurchmischten Wasserschicht. Sie legt fest, in welcher Tiefe das relativ leichte arktische Oberflächenwasser aufhört und die darunterliegende Schicht des einströmenden Nordatlantikwassers beginnt. „Erst wenn der Ozeanrücken unterhalb der winddurchmischten Schicht liegt, kann das schwerere salzhaltige Nordatlantikwasser relativ ungestört über die Passage in die Arktis einströmen“, erklärt Stärz.

„Nachdem die Öffnung der Ozeanpassage zwischen Grönland und Schottland diese kritische Tiefe überwunden hatte, entstand daraus der Ozean mit Salzgehalten wie wir sie heutzutage von der Arktis kennen.“ Die Entstehung von Ozeanpassagen spielt eine entscheidende Rolle für die globale Klimageschichte. Sie führen zu einer Änderung der ozeanischen Wärmetransporte zwischen den mittleren und polaren Breitengraden.

Unterstützt wird die Annahme eines einst isolierten arktischen Ozeanbeckens auch durch den Fund fossiler Süßwasseralgen aus eozänen Tiefseesedimenten, die im Rahmen einer internationalen Bohrung nahe des Nordpols im Jahr 2004 gewonnen wurden. Die einstige Landbrücke liegt mittlerweile in etwa 500 Metern Wassertiefe und besteht fast ausschließlich aus vulkanischem Basaltgestein. Island ist der einzige Teil, der noch immer über dem Wasser liegt.

Hinweise für Redaktionen:

Die Studie erscheint unter folgendem Titel im Fachmagazin Nature Communications: Michael Stärz, Wilfried Jokat, Gregor Knorr, Gerrit Lohmann: „Threshold in North Atlantic-Arctic Ocean circulation controlled by the subsidence of the Greenland-Scotland Ridge“ DOI: 10.1038/NCOMMS15681.

Druckbare Bilder des Arktischen Ozeans finden Sie unter: http://multimedia.awi.de

Ihr Ansprechpartner in der Abteilung Kommunikation und Medien ist Sebastian Grote, Tel.: + 49 (0) 471 4831-2006 (E-Mail: sebastian.grote(at)awi.de).

Ihr wissenschaftlicher Ansprechpartner am Alfred-Wegener-Institut ist Dr. Gregor Knorr, Tel.: +49 (0) 471 4831-1769 (E-Mail: gregor.knorr(at)awi.de).

Das Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) forscht in der Arktis, Antarktis und den Ozeanen der gemäßigten sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der 18 Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.awi.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Biber verändern das Gesicht der Arktis
16.07.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics