Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weltweit genaueste optische Einzelionen-Uhr

10.02.2016

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 E-18. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Als erste Forschergruppe weltweit haben Atomuhren-Spezialisten der Physikalisch-Technischen Bundesanstalt (PTB) jetzt eine optische Einzelionen-Uhr gebaut, die eine bisher nur theoretisch vorhergesagte Genauigkeit erreicht.


Schema: Messung des Einflusses der thermischen Umgebungsstrahlung auf die Frequenz des gespeicherten Ions: Der „Uhrenlaser“ (blauer Strahl) regt das gespeicherte Ion (gelb) mit einer speziellen Pulssequenz an. Die Resonanzfrequenz des Ions wird durch Infrarotstrahlung beeinflusst (hier durch einen Ínfrarotlaser, roter Strahl) und dies lässt sich mithilfe des Uhrenlasers messen. (Abb.: PTB)


Die Hochfrequenzfalle der optischen Ytterbium-Einzelionen-Uhr der PTB. (Foto: PTB)

Der spätere Nobelpreisträger Hans Dehmelt hatte 1981 die grundlegenden Ideen entwickelt, wie sich mit einem in einer Hochfrequenzfalle gespeicherten Ion eine Uhr bauen lässt, die eine – damals unglaublich kleine – relative Messunsicherheit im Bereich von 10 E-18 erreichen kann. Seitdem haben weltweit immer mehr Forschergruppen versucht, dies mit optischen Atomuhren – entweder auf der Basis einzelner gespeicherter Ionen oder vieler neutraler Atome – zu realisieren.

Für die Einzelionen-Uhr sind die PTB-Wissenschaftler jetzt die ersten, die die Ziellinie überschritten haben. Ihre optische Ytterbium-Uhr erreichte eine relative systematische Messunsicherheit von 3 E-18. Die Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Die Definition und Darstellung der SI-Zeiteinheit Sekunde beruht gegenwärtig auf Cäsium-Atomuhren. Ihr „Pendel“ sind Atome, die von Mikrowellenstrahlung (1 E10 Hz) zu Resonanz angeregt werden. Es gilt als sicher, dass eine zukünftige Neudefinition der SI-Sekunde auf einer optischen Atomuhr beruhen wird. Bei ihnen ist die Anregungsfrequenz wesentlich höher (1 E14 bis 1 E15 Hz), sodass diese Uhren erheblich stabiler und genauer arbeiten können als Cäsium-Uhren.

Die jetzt mit der Ytterbium-Uhr erreichte Genauigkeit ist ungefähr 100-fach besser als die der besten Cäsium-Uhren. Bei der Entwicklung der Uhr haben sich die PTB-Forscher einige besondere atomphysikalische Eigenschaften von Yb+ zunutze gemacht. Dieses Ion hat zwei Referenzübergänge, die für eine optische Uhr genutzt werden können.

Der erste basiert auf der Anregung in den sogenannten F-Zustand, der wegen seiner extrem langen natürlichen Lebensdauer (ca. 6 Jahre) eine äußerst schmale Resonanz liefert. Zusätzlich sind wegen der besonderen elektronischen Struktur des F-Zustands die Verschiebungen der Resonanzfrequenz durch elektrische und magnetische Felder außergewöhnlich klein. Der andere Referenzübergang (zum D3/2-Zustand) zeigt größere Frequenzverschiebungen und dient deshalb als empfindlicher „Sensor“ zur Optimierung und Kontrolle der Betriebsbedingungen.

Vorteilhaft ist auch, dass die Wellenlängen der für die Präparation und Anregung von Yb+ benötigten Laser in einem Bereich liegen, in dem zuverlässige und relativ kostengünstige Halbleiterlaser eingesetzt werden können.

Entscheidend für den letzten Genauigkeitssprung war die Kombination von zwei Maßnahmen: Zum einen wurde für die Anregung des Referenzübergangs ein spezielles Verfahren ersonnen, in dem die vom Anregungslaser verursachte „Lichtverschiebung“ der atomaren Resonanzfrequenz separat gemessen wird. Diese Information wird dann verwendet, um die Anregung des Referenzübergangs gegen die Lichtverschiebung und ihre mögliche Variation zu immunisieren.

Zum anderen wurde die von der thermischen Infrarotstrahlung der Umgebung hervorgerufene Frequenzverschiebung (die für den F-Zustand von Yb+ ohnehin relativ klein ist) mit einer Messunsicherheit von nur 3 % bestimmt. Hierfür wurden bei vier verschiedenen Wellenlängen im Infrarotbereich die von Laserlicht erzeugte Frequenzverschiebung und seine Intensitätsverteilung am Ort des Ions gemessen.

Eine weitere besondere Eigenschaft des F-Zustands von Yb+ ist die empfindliche Abhängigkeit der Zustandsenergie vom Wert der Feinstrukturkonstante (der elementaren Naturkonstante der elektromagnetischen Wechselwirkung) und von Anisotropie-Effekten in der Wechselwirkung zwischen Elektronen und einigen potenziellen Formen der sogenannten Dunklen Materie, die eine wichtige Rolle im gegenwärtigen kosmologischen Standardmodell spielt. Vergleiche zwischen Yb+-Uhren und mit anderen hochgenauen optischen Uhren sind derzeit wahrscheinlich der erfolgversprechendste Weg, Theorien aus diesem Bereich der „Neuen Physik“ im Labor zu überprüfen.
(es/ptb)

Ansprechpartner:
Dr. Christian Tamm, Senior Scientist, Fachbereich 4.4, Fachgebiet „Optische Frequenznormale“, Telefon: (0531) 592-4415, E-Mail: christian.tamm@ptb.de

Die wissenschaftliche Veröffentlichung:
N. Huntemann, C. Sanner, B. Lipphardt, Chr. Tamm, E. Peik: Single ion atomic clock with 3 E-18 uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

Weitere Informationen:

http://www.ptb.de/cms/presseaktuelles/journalisten/presseinformationen/presseinf...

Erika Schow | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was unter dem Yellowstone-Vulkan passiert
17.10.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics