TU Berlin: Klima-Woche – Austausch mit dem Weltall

Der Bauernkalender ist heute keine belastbare Quelle mehr für die Produktionsbedingungen in der modernen Landwirtschaft. Drohende Hochwasser oder Trockenperioden zuverlässig vorherzusagen ist eine noch unbewältigte Herausforderung auch für die Wissenschaft. Eine wesentliche Rolle im Klima-Geschehen spielt der Wasseraustausch zwischen Boden und Atmosphäre. Um darüber nähere Erkenntnisse zu gewinnen, haben Forscher*innen von sieben Universitäten und Helmholtz-Einrichtungen aus ganz Deutschland im Sommer 2019 bei Peißenberg im Ost-Allgäu ein temporäres Observatorium aufgebaut, um weltweit zum ersten Mal in einem interdisziplinären Cluster mehr als 20 Neutronensonden im Dienste der Klimaforschung zusammenzulegen. Dessen Daten werden nun ausgewertet. In dem Forschungsprojekt der Deutschen Forschungsgemeinschaft „Cosmic Sense“ leitet die TU Berlin mit dem Fachgebiet Geoinformation in der Umweltplanung die Forschungseinheit „Fernerkundung“.

Interessant sind für die „Cosmic Sense“-Forscher*innen nicht vorrangig Niederschlag und Temperatur. Mit speziellen Sensoren sammeln sie Daten über die kosmische Strahlung, die permanent aus dem Weltall auf die Erde trifft, in sie eindringt und schließlich Aufschluss über die sich wandelnde Feuchtigkeit im Boden gibt. Daraus wollen sie anschließend Prognosen über Klima-Geschehen wie drohende Hochwasser, Trocken- und Dürreperioden ableiten.

Messungen mit speziellen Neutronensonden und Drohnen

„Wasser ist die treibende Größe, es ist zentral für die Klimaveränderungen auf der Erde. Es ist ständig in Bewegung, in Boden, Luft, in Pflanzen, Tieren und Menschen“, erklärt Prof. Dr. Birgit Kleinschmit vom TU-Fachgebiet Geoinformation in der Umweltplanung. Sie leitet zusammen mit Dr. Michael Förster im Projekt „Cosmic Sense“ eine von zehn Forschungseinheiten, die Forschungseinheit „Fernerkundung“. „Wir wollen im Projekt zum einen Muster in der Wasserverteilung im Untersuchungsgebiet erkennen, die für den durchwurzelten Boden repräsentativ sind, auch wenn sie sich durch Austrocknung und Niederschläge laufend ändern. Zum anderen erwarten wir nach einer großflächigen Berechnung der Bodenfeuchte, der wichtigsten Messgröße, nähere Erkenntnisse eben über den Wasseraustausch mit der Atmosphäre. Das könnte eindeutigere Klima-Prognosen erlauben.“ Bei den Messungen kommen einzigartige Datensammlungen zusammen, denn die verwendeten Messgeräte und die geophysikalischen Verfahren weisen mehrere Besonderheiten auf: „Wir messen mit Neutronensonden der neuesten Generation, sogenannten ‚Cosmic-Ray Neutron Sensors‘, kurz CRNS. Diese zählen die atmosphärisch erzeugten und vom Boden reflektierten Neutronen. Aus deren Anzahl kann man die Bodenfeuchte errechnen“, erläutert Geoinformatiker Michael Förster. Physiker, Geologen, Hydrologen, Vegetationsexperten und Technologen arbeiten mit den TU-Geoinformatiker*innen Hand in Hand. „Die speziell entwickelten Neutronensonden können sowohl stationär eingesetzt werden als auch mobil“, erklärt Förster weiter. „So decken wir ein Kerngebiet und zugleich eine ganze Region ab.“

Klimamodelle für regionale landwirtschaftliche Planung und internationale Krisenbewältigung sind das Ziel

Auch messen die modernen Sensoren zerstörungsfrei. Es müssen keine Gruben ausgehoben werden oder andere verfälschende Eingriffe in den Boden vorgenommen werden. Für den Forschungseinsatz bei Peißenberg hatten die TU-Forscher*innen außerdem eine eigene, mit speziellen Sensoren bestückte, 100 000 Euro teure Drohne mitgebracht, die aus Mitteln des TU-eigenen Forschungs-Infrastrukturprogramms finanziert worden ist. Sie beobachtete das Gebiet aus 75 bis 100 Metern Höhe. Eine an der Drohne angebrachte Laser- und eine Hyper-spektralkamera lieferte zum Beispiel genaue Informationen über die Oberflächenstruktur der Landschaft sowie über Feuchte- und Wärme-Cluster im Gebiet. Die Informationen der Drohne können die Bodenfeuchtewerte der Neutronensonden auf größere Bereiche übertragen. Auf den Bildern der Wärme und Feuchtigkeit messenden Kameras sind Kühe zu erkennen, denn auch diese produzieren Wärme und verdunsten Feuchtigkeit. Auch die unterschiedliche Wärme und Verdunstung von gemähten und ungemähten Wiesen ist zu erkennen. Einbezogen in die Berechnungen werden auch Satellitendaten, überwiegend aus dem Erdbeobachtungsprogramm „Copernicus“ der EU und des Deutschen Zentrums für Luft- und Raumfahrt (DLR).

Mehrere Wochen haben die Projektbeteiligten während ihrer Intensiv-Messkampagne im Sommer im Allgäu verbracht. Die detaillierte Datenauswertung zielt nun auf die Erarbeitung zunächst eines regionalen Klimamodells, das auch Vorhersagen von Starkregen und Dürreperioden erlaubt. Doch später soll es Blaupause auch für andere regionale Klimamodelle zur landwirtschaftlichen Planung und Krisenbewältigung sein, zum Beispiel in Dürregebieten Afrikas. Zunächst aber soll ein Bodenfeuchte-und-Dürre-Monitoring für ganz Deutschland entwickelt werden, denn für die Landwirtschaft sind solche Modelle ganz entscheidend. „Die Landwirte vor Ort haben daher unsere Arbeit auch mit großem Interesse verfolgt“, so Birgit Kleinschmit.

Weitere Informationen: http://www.tu-berlin.de/?205063, http://www.uni-potsdam.de/de/cosmicsense.html
Video von einer Drohnenbefliegung: https://youtu.be/2AzJJ2PEk_I

Fotomaterial zum Download
http://www.tu-berlin.de/?210391

Weitere Informationen erteilen Ihnen gern:
Prof. Dr. Birgit Kleinschmit, Dr. Michael Förster
TU Berlin
Institut für Landschaftsarchitektur und Umweltplanung
Fachgebiet Geoinformation in der Umweltplanung
Tel.: 030 314-73290, -72798
E-Mail: birgit.kleinschmit@tu-berlin.de, michael.foerster@tu-berlin.de

Media Contact

Stefanie Terp idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer