Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefsee offenbart Zusammenhang zwischen Erdbeben und Kohlenstoffkreislauf

07.02.2019

Um den globalen Kohlenstoffkreislauf zu verstehen, ist die Erforschung der Tiefsee unerlässlich. Zu diesem Schluss kam ein internationales Team unter der Leitung von Innsbrucker Geologen. Erstmals gelang es ihnen, die Menge an organischem Kohlenstoff zu quantifizieren, die durch ein einziges tektonisches Ereignis, dem Tohoku-oki-Erdbeben im Jahr 2011, in die Tiefsee transportiert wurde. Die Ergebnisse wurden kürzlich in Scientific Reports veröffentlicht.

Ein internationales Team unter der Leitung der Innsbrucker Geologen Arata Kioka, Tobias Schwestermann, Jasper Moernaut und Michael Strasser konnte erstmals das Gesamtvolumen an Sediment quantifizieren, das durch das Erdbeben in Japan 2011 aufgewirbelt und in den bis zu 8 km tiefen Japangraben transportiert wurde.


Die deutsche Sonne zählt zu den technisch am besten ausgestatteten Forschungsschiffen, die es derzeit gibt.

Universität Hamburg/LDF/V M.Hartig/Meyer Werft

Dazu wurden in einem durch den Wissenschaftsfonds FWF finanzierten Projekt, und in Zusammenarbeit mit Wissenschaftlern aus Japan, den USA, Deutschland und der Schweiz Proben und Daten analysiert und ausgewertet, welche in mehreren Expeditionen zwischen 2012 und 2016 vor der Küste Japans gesammelt wurden.

Durch die Messung des Kohlenstoffgehalts im Sediment konnten sie die Gesamtkohlenstoffmasse, welche ausgelöst durch dieses Erdbeben der Magnitude 9 in die Tiefsee umgelagert wurde, auf >1 Teragramm (106 Tonnen) schätzen.

„Die Ergebnisse haben uns und unsere Kollegen überrascht“, sagt Tobias Schwestermann, Doktorand am Institut für Geologie der Universität Innsbruck. „Das ist viel höher als erwartet, wenn man die Kohlenstoffflüsse in anderen Tiefseegrabensystemen weltweit beobachtet“, so der Geologe weiter.

Ein Beispiel verdeutlicht das Ausmaß des Ergebnisses: Das Flusssystem des Ganges-Brahmaputra, eines der größten Flusssysteme der Welt, transportiert jährlich etwa 4 Tg Kohlenstoff ins Meer. Die Tatsache, dass nur ein einziges tektonisches Ereignis rund ein Viertel dieser Menge an Kohlenstofffluss verursachen kann, unterstreicht die Relevanz für den Kohlenstoffkreislauf in der Tiefsee.

„Die Ergebnisse zeigen, dass wir in Zukunft auch an die tiefsten und am wenigsten erforschten Tiefseegräben unserer Weltmeere denken müssen, wenn wir über den globalen Kohlenstoffkreislauf sprechen“, sagt Michael Strasser, Professor am Institut für Geologie.

Erstmalige Quantifizierung der organischen Kohlenstoffmasse im Japangraben

Weltweit gibt es nur sechzehn Regionen mit Wassertiefen von mehr als 6 km. „Alles in allem ist die Tiefsee wohl noch weniger erforscht als der Mond. Genau das fasziniert uns“, sagt Arata Kioka, Postdoc am Institut für Geologie. Die erste großflächige Quantifizierung der organischen Kohlenstoffmasse in solchen Wassertiefen wurde durch verschiedene Messmethoden ermöglicht.

Einige davon wurden zum ersten Mal in der Tiefsee eingesetzt. „Besonders das deutsche Forschungsschiff Sonne war entscheidend für die Ergebnisse. Es ist eines der technisch am besten ausgestatteten Forschungsschiffe, die derzeit verfügbar sind“, sagt Arata Kioka. Zunächst führte das Team hochauflösende bathymetrische Untersuchungen und Strukturaufnahmen unter dem Meeresboden durch, um die Sedimente sichtbar zu machen. Der Kohlenstoffgehalt wurde anhand neuer Sedimentkerne aus dem Japangraben analysiert.

Weiterführendes Projekt

Die neuesten Ergebnisse motivieren die Geologen zu weiteren Forschungsexpeditionen, um die Tiefsee noch weiter zu erkunden. Gelegenheit dazu bietet ihnen das „International Ocean Discovery Program“ (IODP), eine internationale Meeresforschungskooperation.

Das IODP untersucht die Geschichte und Dynamik der Erde, indem marine Forschungsplattformen genutzt werden, um Daten, die in Sedimenten und Gesteinen des Meeresbodens aufgezeichnet wurden, zu gewinnen und die Prozesse unter dem Meeresboden zu studieren.

Michael Strasser ist derzeit für den IODP-Forschungsantrag verantwortlich, der 2020 umgesetzt wird und neue, lange Sedimentkerne aus dem Japangraben sammelt, um vergangene Erdbeben und ihre Auswirkungen auf die Entwicklungen und die Prozesse in Tiefseegräben zu untersuchen.

Wissenschaftliche Ansprechpartner:

Univ.-Prof. Dr. Michael Strasser
Institut für Geologie
Universität Innsbruck
Telefon: +43 512 507 54213
E-Mail: michael.strasser@uibk.ac.at

Originalpublikation:

Publikation: Megathrust earthquake drives drastic organic carbon supply to the hadal trench. A. Kioka, T. Schwestermann, J. Moernaut, K. Ikehara, T. Kanamatsu, C. M. McHugh, C. dos Santos Ferreira, G. Wiemer, N. Haghipour, A. J. Kopf, T. I. Eglinton &
M. Strasser. Scientific Reports
DOI: https://dx.doi.org/10.1038/s41598-019-38834-x

Lisa Marchl, MSc. | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?
20.11.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Erste Großschmetterlings-Raupe im Baltischen Bernstein entdeckt
20.11.2019 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics