Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018

Genau wie Lawinen an Land können Hangrutschungen unter Wasser verschiedene Ursachen haben. Immer wieder werden entsprechende Ereignisse mit instabilen Gashydraten im Meeresboden in Verbindung gebracht. Wissenschaftlerinnen und Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel haben jetzt Belege dafür gefunden, dass der Zusammenhang ein anderer sein könnte. Die Studie erscheint heute in der internationalen Fachzeitschrift Nature Communications.

Mitte der 1990er Jahre konnten unter anderem deutsche Forscher nachweisen, dass in den Kontinentalhängen am Rand aller Ozeane große Mengen an Gashydraten eingeschlossen sind. Diese festen, eisartigen Verbindungen aus Wasser und Gasen galten seitdem als eine Art Zement, der die Hänge unter Wasser festigt.


Struktur von Gashaydraten.

Grafik: J. Greinert / GEOMAR


Schematische Darstellung, wie stabile Gashydrate indirekt eine Hangrutschung auslösen können: Gas und Flüssigkeiten sammeln sich unter der Gashydratstabilitätszone (GHSZ) und sorgen für Überdruck. Wird er zu groß, bahnen sie sich einen eigenen Weg durch die Gasyhdrate Richtung Meeresboden. Dort können sie weichere Sedimentschichten destabilisieren und ins Rutschen bringen.

Quelle: GEOMAR

Doch die Gashydrate sind nur bei hohem Druck und niedrigen Temperaturen stabil. Deshalb gibt es Überlegungen, ob steigende Wassertemperaturen die Hydrate auflösen und dabei auch Hangrutschungen und in deren Folge Tsunamis auslösen könnten. Dass viele fossile Rutschungen im Bereich von Gashydratlagerstätten liegen, nährt diese Vermutung.

Jetzt haben Forschende des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel zusammen mit Kollegen der Christian-Albrechts-Universität zu Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung Belege dafür gefunden, dass Gashydrate und Hangrutschungen tatsächlich ursächlich zusammenhängen können – aber ganz anders als bisher vermutet.

„Unsere Daten zeigen, dass ausgerechnet stabile Gashydrate indirekt das Sediment über ihnen destabilisieren können“, sagt Dr. Judith Elger vom GEOMAR. Sie ist Erstautorin der Studie, die heute in der internationalen Fachzeitschrift Nature Communications erscheint.

Den Anstoß für die Untersuchung gab eine Ungereimtheit bei bisherigen Theorien, die schmelzende Gashydrate als Ursache von Hangrutschungen sehen. Denn die Wassertiefen stimmten nicht. „Wenn steigende Wassertemperaturen oder fallende Meeresspiegel Gashydrate destabilisieren, dann zuerst im oberen Bereich des Kontinentalhangs. Die Rutschungen, deren Spuren wir kennen, wurden aber alle tiefer ausgelöst“, erklärt Dr. Elger.

Um diesem Widerspruch aufzulösen, hat sich die Geophysikerin seismische Daten aus dem Gebiet der Hinlopen-Rutschung angesehen. Diese ereignete sich vor etwa 30.000 Jahren nördlich von Spitzbergens in 750 bis 2.200 Metern Wassertiefe. Mit diesen Daten hat das Team anschließend die Vorgänge im Meeresboden in einem Computermodell nachvollzogen.

Dabei kam heraus, dass die Gashydrate eine feste, undurchlässige Schicht im Meeresboden bilden können. Darunter sammeln sich freies Gas und Flüssigkeiten. Es entsteht ein Überdruck unterhalb der Hydratschicht, bis diese nicht mehr standhält. Freies Gas und Flüssigkeiten steigen in den durch den Überdruck verursachten Rissen, die heute noch im Untergrund nachweisbar sind, schnell Richtung Meeresboden auf. Dort treffen sie auf ohnehin weniger stabiles Sediment und setzen es in Bewegung.

„Wir konnten zeigen, dass dieser Prozess im Fall der Hinlopen-Rutschung eine realistische Alternative zu anderen vermuteten Prozessen ist, völlig unabhängig von klimatischen Veränderungen. Es fehlen aber noch wichtige Informationen über das Verhalten von Sedimenten mit Gashydraten, um unsere Modelle zu verbessern“, sagt Dr. Elger.

Die Studie zeigt aber auf jeden Fall Zusammenhänge, die bisher bei der Suche nach Ursachen von Hangrutschungen nicht berücksichtigt wurden. „Weitere Studien, die seismische Daten und geotechnische Laborversuche kombinieren, müssen jetzt zeigen, ob auch an anderen historischen Rutschungen ähnliche Rissstrukturen im Meeresboden nachgewiesen werden können und ob es sich damit um ein verbreitetes Phänomen handelt“, so die Forscherin.

Originalarbeit:
Elger, J., C. Berndt, L. Rüpke, S. Krastel, F. Gross, W. H. Geissler (2018): Submarine slope failure due to pipe structure formation. Nature Communications, http://dx.doi.org/10.1038/s41467-018-03176-1

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.geomar.de/go/hosst Die Helmholtz Research School for Ocean System Science and Technology (HOSST)

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Biber verändern das Gesicht der Arktis
16.07.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics