Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Gashydrate lösen Hangrutschung aus

19.02.2018

Genau wie Lawinen an Land können Hangrutschungen unter Wasser verschiedene Ursachen haben. Immer wieder werden entsprechende Ereignisse mit instabilen Gashydraten im Meeresboden in Verbindung gebracht. Wissenschaftlerinnen und Wissenschaftler des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel haben jetzt Belege dafür gefunden, dass der Zusammenhang ein anderer sein könnte. Die Studie erscheint heute in der internationalen Fachzeitschrift Nature Communications.

Mitte der 1990er Jahre konnten unter anderem deutsche Forscher nachweisen, dass in den Kontinentalhängen am Rand aller Ozeane große Mengen an Gashydraten eingeschlossen sind. Diese festen, eisartigen Verbindungen aus Wasser und Gasen galten seitdem als eine Art Zement, der die Hänge unter Wasser festigt.


Struktur von Gashaydraten.

Grafik: J. Greinert / GEOMAR


Schematische Darstellung, wie stabile Gashydrate indirekt eine Hangrutschung auslösen können: Gas und Flüssigkeiten sammeln sich unter der Gashydratstabilitätszone (GHSZ) und sorgen für Überdruck. Wird er zu groß, bahnen sie sich einen eigenen Weg durch die Gasyhdrate Richtung Meeresboden. Dort können sie weichere Sedimentschichten destabilisieren und ins Rutschen bringen.

Quelle: GEOMAR

Doch die Gashydrate sind nur bei hohem Druck und niedrigen Temperaturen stabil. Deshalb gibt es Überlegungen, ob steigende Wassertemperaturen die Hydrate auflösen und dabei auch Hangrutschungen und in deren Folge Tsunamis auslösen könnten. Dass viele fossile Rutschungen im Bereich von Gashydratlagerstätten liegen, nährt diese Vermutung.

Jetzt haben Forschende des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel zusammen mit Kollegen der Christian-Albrechts-Universität zu Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung Belege dafür gefunden, dass Gashydrate und Hangrutschungen tatsächlich ursächlich zusammenhängen können – aber ganz anders als bisher vermutet.

„Unsere Daten zeigen, dass ausgerechnet stabile Gashydrate indirekt das Sediment über ihnen destabilisieren können“, sagt Dr. Judith Elger vom GEOMAR. Sie ist Erstautorin der Studie, die heute in der internationalen Fachzeitschrift Nature Communications erscheint.

Den Anstoß für die Untersuchung gab eine Ungereimtheit bei bisherigen Theorien, die schmelzende Gashydrate als Ursache von Hangrutschungen sehen. Denn die Wassertiefen stimmten nicht. „Wenn steigende Wassertemperaturen oder fallende Meeresspiegel Gashydrate destabilisieren, dann zuerst im oberen Bereich des Kontinentalhangs. Die Rutschungen, deren Spuren wir kennen, wurden aber alle tiefer ausgelöst“, erklärt Dr. Elger.

Um diesem Widerspruch aufzulösen, hat sich die Geophysikerin seismische Daten aus dem Gebiet der Hinlopen-Rutschung angesehen. Diese ereignete sich vor etwa 30.000 Jahren nördlich von Spitzbergens in 750 bis 2.200 Metern Wassertiefe. Mit diesen Daten hat das Team anschließend die Vorgänge im Meeresboden in einem Computermodell nachvollzogen.

Dabei kam heraus, dass die Gashydrate eine feste, undurchlässige Schicht im Meeresboden bilden können. Darunter sammeln sich freies Gas und Flüssigkeiten. Es entsteht ein Überdruck unterhalb der Hydratschicht, bis diese nicht mehr standhält. Freies Gas und Flüssigkeiten steigen in den durch den Überdruck verursachten Rissen, die heute noch im Untergrund nachweisbar sind, schnell Richtung Meeresboden auf. Dort treffen sie auf ohnehin weniger stabiles Sediment und setzen es in Bewegung.

„Wir konnten zeigen, dass dieser Prozess im Fall der Hinlopen-Rutschung eine realistische Alternative zu anderen vermuteten Prozessen ist, völlig unabhängig von klimatischen Veränderungen. Es fehlen aber noch wichtige Informationen über das Verhalten von Sedimenten mit Gashydraten, um unsere Modelle zu verbessern“, sagt Dr. Elger.

Die Studie zeigt aber auf jeden Fall Zusammenhänge, die bisher bei der Suche nach Ursachen von Hangrutschungen nicht berücksichtigt wurden. „Weitere Studien, die seismische Daten und geotechnische Laborversuche kombinieren, müssen jetzt zeigen, ob auch an anderen historischen Rutschungen ähnliche Rissstrukturen im Meeresboden nachgewiesen werden können und ob es sich damit um ein verbreitetes Phänomen handelt“, so die Forscherin.

Originalarbeit:
Elger, J., C. Berndt, L. Rüpke, S. Krastel, F. Gross, W. H. Geissler (2018): Submarine slope failure due to pipe structure formation. Nature Communications, http://dx.doi.org/10.1038/s41467-018-03176-1

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.geomar.de/go/hosst Die Helmholtz Research School for Ocean System Science and Technology (HOSST)

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Einzigartiger Wissensschatz an der BfG: 30 Jahre Weltdatenzentrum Abfluss
14.11.2018 | Bundesanstalt für Gewässerkunde

nachricht Wie viel Schutt liegt auf Gletschern?
09.11.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungsnachrichten

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Mit Gold Krankheiten aufspüren

14.11.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics