Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sinkender Meeresspiegel brachte Vulkane zum Überlaufen

06.07.2017

Internationales Forschungsteam findet Verbindung zwischen fester Erde und Klimasystem

Während der letzten 800.000 Jahre zeigten antarktische Temperaturen und atmosphärischer Kohlendioxidgehalt eine im Wesentlichen gleichgerichtete Entwicklung. Doch der Übergang in die letzte Eiszeit verlief anders: Vor ca. 80.000 Jahren sanken die Temperaturen, der Kohlendioxidgehalt aber blieb stabil.


Modell eines Hotspot-Vulkans. Am Übergang zu jüngsten Eiszeit könnte der nachlassende Druck des Meerwassers auf die Erdkruste zu erhöhter vulkanischer Aktivität geführt haben. Grafik: Jörg Hasenclever

Ein internationales Forscherteam unter gemeinsamer Leitung des GEOMAR Kiel und des Alfred-Wegener-Instituts Bremerhaven hat nun mit Hilfe von Modellrechnungen herausgefunden, dass ein Zusammenspiel aus abfallendem Meeresspiegel und zunehmender Vulkanaktivität zu der Anomalie geführt haben könnte. Die Ergebnisse erscheinen heute in der internationalen Fachzeitschrift Nature Communications.

Bei der Entwicklung des Klimas gibt es Regelmäßigkeiten, die sich über lange Abschnitte der Erdgeschichte verfolgen lassen. Eine davon lautet: Die globalen Durchschnittstemperaturen und der Anteil von Kohlendioxid in der Erdatmosphäre entwickeln sich mehr oder weniger gleichgerichtet. Vereinfacht ausgedrückt heißt das: Sinken die Temperaturen, sinken auch die CO2-Werte und umgekehrt.

Doch es gibt Ausnahmen von dieser Regel. Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern unter Leitung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel und des Alfred-Wegener-Instituts Helmholtz-Zentrum für Polar- und Meeresforschung hat jetzt eine mögliche Ursache für eine derartige Unregelmäßigkeit entdeckt.

Ein Beispiel ist der letzte Übergang zu eiszeitlichen Bedingungen. Vor circa 80.000 Jahren sanken zwar die Temperaturen, aber die Menge des Kohlendioxids in der Atmosphäre blieb für mehrere tausend Jahre relativ stabil. Der Grund dafür könnte in einem Wechselspiel aus sinkendem Meeresspiegel und erhöhter mariner Vulkanaktivität liegen. So berichten es die Forschenden nun in der internationalen Fachzeitschrift Nature Communications.

In der Übergangsphase von einer Warm- zu einer Kaltzeit bilden sich aufgrund abnehmender Temperaturen kontinentale Eisschilde aus, die große Mengen an Wasser binden. Dadurch sinkt der Meeresspiegel und damit die Wasserlast, die auf den Ozeanboden – und damit auf die Erdkruste - einwirkt.

„Um diese Prozesse besser zu verstehen und zu quantifizieren, haben wir ein umfangreiches Computermodell entwickelt, welches wir mit geodynamischen Daten gefüttert haben. In Kombination dazu haben wir Paläo-Klimadaten analysiert und Simulationen mit einem globalen Kohlenstoffkreislauf-Modell durchgeführt“, erklärt Dr. Jörg Hasenclever, der Erstautor der Studie, das Vorgehen des Teams. Die Untersuchungen beziehen sich dabei auf weltweit 43 Unterwasservulkane an sogenannten Hotspots und die vulkanische Aktivität entlang der Mittelozeanischen Rücken.

„Unser Ansatz hat gezeigt, dass durch die Druckabnahme an der Erdkruste ein vermehrter Lava- und Kohlendioxidausstoß stattgefunden haben könnte. Das ausgestoßene CO2 der Vulkane hat dabei womöglich dem Abfall des atmosphärischen Kohlendioxids entgegengewirkt“, ergänzt Prof. Dr. Lars Rüpke vom GEOMAR.

Die Untersuchungen zeigen, dass es enge Wechselwirkungen zwischen der festen Erde und dem Klimasystem auch auf geologisch relativ kurzen Zeitskalen von 5,000 bis 15,000 Jahren geben kann. Mitautor Dr. Gregor Knorr vom Alfred-Wegener-Institut erläutert weiter: „Entsprechende Wechselwirkungen können somit einen neuartigen Baustein für die Erdsystemforschung liefern, um die Klimaentwicklung während eiszeitlicher Meeresspiegeländerungen besser zu verstehen“.

Originalarbeit:
Hasenclever, J., G. Knorr, L. H. Rüpke, P. Köhler, J. Morgan, K. Garofalo, S. Barker, G. Lohmann, I. R. Hall: Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing (2017). Nature Communications, http://dx.doi.org/10.1038/NCOMMS15867

Weitere Informationen:

http://www.geomar.de Das GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel
http://www.awi.de Das Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Beitrag der Küsten zum Klimawandel womöglich unterschätzt
11.11.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Turbulenz sorgt für Eis in Wolken
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics