Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerewellen beeinflussen Wetter und Klima

15.09.2017

Schwerewellen entstehen in der Atmosphäre durch destabilisierende Prozesse, beispielsweise an Wetterfronten, bei Gewittern oder wenn Luftmassen über Gebirge streichen. Gelegentlich kann man sie als Wolkenbänder am Himmel sehen. Für Klima- und Wettervorhersage-Modelle sind sie jedoch wegen ihrer kurzen Wellenlänge weitgehend „unsichtbar“. Erst durch spezielle Zusatzkomponenten in den Modellen können die Effekte von Schwerewellen berücksichtigt werden. Die von der Deutschen Forschungsgemeinschaft geförderte Forschergruppe „MS-GWaves“ unter Federführung der Goethe-Universität hat solche Parametrisierungen inzwischen weiterentwickelt und wird sie in der zweiten Förderperiode testen.

Obwohl Schwerewellen vergleichsweise kurze Wellenlängen von nur einigen 100 Metern bis zu einigen 100 Kilometern haben, beeinflussen sie die Verbreitung von Wasserdampf und die großräumigen Winde und Temperaturverteilungen zuweilen erheblich. Am stärksten ausgeprägt ist dieser Effekt in den höheren Schichten der Atmosphäre.


Schwerewellen

Bildrechte: Gerd Baumgarten

Quelle: www.uni-frankfurt.de/68360990

Diese wirken wiederum so stark auch auf die tieferen Schichten ein, dass eine realistische Modellierung von Wetter und Klima in der Atmosphäre nicht ohne belastbare Berücksichtigung von Schwerewellen möglich ist. Schwerewellen sind aber auch für die Vorhersage von Turbulenzen für den Flugverkehr wichtig, und sie spielen eine bedeutsame Rolle in Starkwetterereignissen wie schweren Regenfällen oder Stürmen.

In der ersten Förderphase haben die 10 beteiligten Forschungsinstitute die Entstehung von Schwerewellen in einer der bisher aufwändigsten Messkampagnen mit Radar, leistungsfähigen Lasern, Raketen und Forschungsflugzeugen und auch in Labormessungen ausgiebig dokumentiert.

Darüber hinaus haben sie die Theorie der Entstehung und Ausbreitung von Schwerewellen soweit verbessert, dass deren Entwicklung sich auch in hochauflösenden numerischen Modellen wesentlich zuverlässiger nachvollziehen lässt.

Die dabei gewonnenen Erkenntnisse haben die Forscher um Prof. Ulrich Achatz vom Institut für Atmosphäre und Umwelt der Goethe-Universität in einem weiteren Schritt genutzt, um Parametrisierungen, die den Einfluss von Schwerewellen beschreiben, in typischerweise nur gröber auflösenden Wetter- und Klimamodellen zu verbessern. Sie haben das vom Deutschen Wetterdienst und dem Max-Planck-Institut für Meteorologie verwendete Wetter- und Klimamodell ICON inzwischen zum Modell UA-ICON erweitert, das exaktere Vorhersagen für die obere Atmosphäre erlaubt.

UA-ICON kann mit verschiedenen Auflösungen betrieben werden, so dass Schwerewellen darin wahlweise entweder für Testzwecke explizit simuliert werden können oder im operationellen Betrieb parametrisiert werden müssen. In der zweiten Förderphase werden die weiterentwickelten Parametrisierungen nun in dieses Modell eingebaut und dort erprobt.

Die Auswirkungen auf Wettervorhersage und Klimamodellierung sollen ein weiterer Schwerpunkt sein. Ein wichtiger Aspekt ist dabei in einer Zusammenarbeit mit der Universität Mainz eine verbesserte Beschreibung der Wechselwirkung von Schwerewellen und Eiswolken (Cirren). Möglicherweise spielt diese für das Klima eine bedeutende Rolle.

Fotos von Schwerewellen zum Download finden Sie unter: www.uni-frankfurt.de/68360990
Bildrechte: Gerd Baumgarten

Information: Prof. Ulrich Achatz, Institut Atmosphäre und Umwelt, Fachbereich 11, Campus Riedberg, Tel.: (069) 798-40243, achatz@iau.uni-frankfurt.de.

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main.

Internet: http://www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531, kaltenborn@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Biber verändern das Gesicht der Arktis
16.07.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics