Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schaufenster Bioökonomie: Tropische Wolkenforschung für genauere Klimaprognosen

28.02.2020

Europäische Feldstudie EUREC4A bei Barbados: Klimaforscher der Universität Hohenheim in Stuttgart unterstützen mit Hochleistungslaser-Technologie

Wie schnell wird die globale Erwärmung in den kommenden Jahrzehnten voranschreiten? Ein entscheidender Faktor dafür ist bisher noch kaum erforscht: Tropische Schönwetterwolken, die sich in den äquatornahen Passatregionen Tag für Tag über dem Ozean bilden und wie ein kühlender Schutzschild für die Atmosphäre wirken.


Installation des Hohenheimer Lidar-Systems ARTHUS auf dem Forschungsschiffs Maria S. Merian

Foto: Universität Hohenheim / A. Behrendt

Sollte die Wolkendecke unter dem Einfluss des Klimawandels dünner werden, könnte das den weiteren Temperaturanstieg maßgeblich beschleunigen. Die weltweit einzigartige europäische Feldstudie EUREC4A mit Beteiligung von mehr als 30 nationalen und internationalen Partnern nahm die komplexen Wechselwirkungen zwischen Ozean und Atmosphäre am Beispiel der Region um Barbados in den vergangenen Wochen so genau unter die Lupe wie nie zuvor.

Mit dabei: Fünf Klimaforscher und Hochleistungslaser-Technologie der Universität Hohenheim in Stuttgart. Das Lidar-System ARTHUS (Atmospheric Raman Temperature and Humidity Sounder), das an Bord eines Forschungsschiffs zum Einsatz kam, gilt weltweit als das beste Fernerkundungssystem, um Wasserdampf und Temperatur in den unteren Atmosphärenschichten zu messen.

Vier Forschungsflugzeuge, vier hochseetauglicher Forschungsschiffe, fünf autonome Unterwasserfahrzeuge, modernste bodengestützte Fernerkundung und eine neue Generation hochentwickelter Satellitenfernerkundungsmethoden sowie hochauflösender Klimamodellierungen: Die deutsch-französisch geleitete Kampagne EUREC4A (Elucidating the role of clouds-circulation coupling in climate) gilt aktuell als ambitionierteste europäische Feldstudie im Bereich der Atmosphären- und Meereswissenschaften.

„Das übergeordnete Ziel sind genauere Prognosen zum weiteren Verlauf der Erderwärmung. In den letzten Jahren mehrten sich die Hinweise, dass die äquatornahen Passatregionen besonders klimasensitiv sind, d.h. für das globale Klimasystem eine wichtige Rolle spielen. Kleine Veränderungen hier könnten Rückkopplungseffekte auslösen, die den Temperaturanstieg maßgeblich beschleunigen“, erklärt Prof. Dr. Volker Wulfmeyer vom Institut für Physik und Meteorologie an der Universität Hohenheim, der in den vergangenen Wochen im Rahmen von EUREC4A eine Messkampagne an Bord des Forschungsschiffs Maria S. Merian leitete.

Passatwolken kühlen Atmosphäre

Im Mittelpunkt des Forschungsinteresses steht die Wolkenbildung in den Passatregionen. Wie alle Schönwetterwolken bilden sich die tropischen Passatwolken Tag für Tag in einheitlicher Höhe über dem Ozean und lösen sich abends wieder auf. Sie sind besonders leicht und flach und bewirken nur selten Niederschläge.

Doch so flüchtig diese Wolkengebilde auch sind, so bedeutsam könnte ihre Rolle für das Weltklima sein: „Die Wolkendecke in den Passatregionen reflektiert mehr Sonnenlicht als der Ozean. Deshalb übt sie einen kühlenden Effekt auf die Atmosphäre aus. Klimaforscher vermuten jedoch, dass die Passatbewölkung in Folge der globalen Erwärmung stark abnehmen könnte. Dies könnte den zukünftigen Temperaturanstieg weiter beschleunigen“, so Prof. Dr. Wulfmeyer.

Komplexe Wechselwirkungen verifizieren

Hypothesen zu diesem Rückkopplungseffekt wurden über einen Zeitraum von Jahrzehnten aus mehreren Runden von internationalen Klimamodell-Vergleichsstudien (CMIP) entwickelt. Ziel der Messkampagne EUREC4A ist es nun, zu überprüfen, ob diese Modelle richtig sind.

„Dazu ist es notwendig besser zu verstehen, wie sich Wolken bilden, räumlich organisieren und auflösen. Wichtige Faktoren dafür sind Temperatur, Luftfeuchtigkeit sowie Auf- und Abwinde, die entstehen, wenn Luftmassen in der Atmosphäre aufeinanderstoßen bzw. auseinanderdriften. Bisher noch wenig erforscht ist in diesem Zusammenhang die komplexe Interaktion des Ozeans mit der Atmosphäre. Also z.B. welchen Einfluss Meeresströmungen, Ozeantemperatur und aufsteigender Wasserdampf etc. auf die Wolkenbildung nimmt“, so Prof. Dr. Wulfmeyer.

Zwar gibt es bereits Modelle, welche die hochkomplexen Wechselwirkungen abbilden können. Allerdings müssen diese anhand von Messungen noch überprüft und angepasst werden. Erstmals werden in der Kampagne EUREC4A dazu nun klein- und großskalige Beobachtungen von atmosphärischen und ozeanischen Prozessen miteinander verknüpft.

Lasersysteme der Universität Hohenheim im Einsatz

Auf einem der vier Forschungsschiffe kam dabei in den vergangen Wochen auch Hochleistungslaser-Technologie der Universität Hohenheim zur Anwendung: Der Atmospheric Raman Temperature and Humidity Sounder („ARTHUS“) ist eines von drei Lidar-Systemen des Instituts für Physik und Meteorologie. Es gilt weltweit als das besten Fernerkundungssystem, um Wasserdampf und Temperatur in den unteren Atmosphärenschichten bis zu 4 km Höhe in extrem hoher Auflösung zu messen.

„Eine Besonderheit der Hohenheimer Methode besteht darin, dass sie auch dreidimensionale Darstellungen ermöglicht. Dafür wird ein dritter Laser wie ein Radar während des Messvorgangs gekippt, so kann nicht nur die Luftsäule direkt über dem Laser erfasst werden, sondern ein kompletter Schnitt von mehreren Quadratkilometern. Damit kann z.B. das Windprofil bis zu einer Höhe von einigen Kilometern gemessen werden“, so Dr. Andreas Behrendt, der Leiter des Fernerkundungsteams.

Die Messungen der Lidar-Systeme an Bord des Forschungsschiffs Maria S. Merian wurden von der Fernerkundungsabteilung des Instituts für Physik und Meteorologie (IPM) der Universität Hohenheim durchgeführt, unter Beteiligung der Wissenschaftler Dr. Diego Lange, Dr. Andreas Behrendt, Dr. Florian Späth und Timo Keller. Geleitet wurde die Kampagne von Prof. Dr. Volker Wulfmeyer.

Hintergrund: „Grand Science Challenges on Clouds, Circulation and Climate Sensitivity“

Die Feldstudie EUREC4A, die vom 20. Januar bis 20. Februar 2020 lief, ist ein Höhepunkt der „Grand Science Challenges on Clouds, Circulation and Climate Sensitivity“ des Weltklimaforschungsprogramms (WCRP). Sie baut auf einem Jahrzehnt von Messungen im tropischen Atlantik auf, das 2010 mit der Errichtung eines Wolkenobservatoriums auf Barbados startete, und mit zwei Messkampagnen mit dem Forschungsflugzeug HALO 2013 und 2016 fortgesetzt wurde.

HINTERGRUND: Wissenschaftsjahr 2020 Bioökonomie

2020 steht das Wissenschaftsjahr im Zeichen der Bioökonomie – und damit einer nachhaltigen, biobasierten Wirtschaftsweise. Es geht darum, natürliche Stoffe und Ressourcen nachhaltig und innovativ zu produzieren und zu nutzen und so fossile und mineralische Rohstoffe zu ersetzen, Produkte umweltverträglicher herzustellen und biologische Ressourcen zu schonen. Das ist in Zeiten des Klimawandels, einer wachsenden Weltbevölkerung und eines drastischen Artenrückgangs mehr denn je notwendig. Das vom Bundesministerium für Bildung und Forschung (BMBF) ausgerichtete Wissenschaftsjahr Bioökonomie rückt das Thema ins Rampenlicht.

Die Bioökonomie ist das Leitthema der Universität Hohenheim in Forschung und Lehre. Sie verbindet die agrarwissenschaftliche, die naturwissenschaftliche sowie die wirtschafts- und sozialwissenschaftliche Fakultät. Im Wissenschaftsjahr Bioökonomie informiert die Universität Hohenheim in zahlreichen Veranstaltungen Fachwelt und Öffentlichkeit zum Thema. Im Februar lautet der monatliche Themenschwerpunkt: Klimawandel und Co. - darum brauchen wir Bioökonomie.

Text: Leonhardmair

Wissenschaftliche Ansprechpartner:

Prof. Dr. Volker Wulfmeyer, Universität Hohenheim, Institut für Physik und Meteorologie
T +49 711 459 22150, E volker.wulfmeyer@uni-hohenheim.de

Weitere Informationen:

http://eurec4a.eu "Messkampagne EUREC4A"
http://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL085774 "Lasersystem ARTHUS"
http://www.wissenschaftsjahr.de/2020 "Wissenschaftsjahr 2020 BMBF"
http://www.uni-hohenheim.de/wissenschaftsjahr-2020-biooekonomie "Wissenschaftsjahr 2020 Hohenheim"

Leonhardmair | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-hohenheim.de/pressemitteilung?tx_ttnews%5Btt_news%5D=46286&cHash=5837a307c6aaa7dd8259ee90412f4739

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Vom Kommen und Gehen eines Mega-Sees
09.07.2020 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht 1,5 Milliarden Menschen werden vom Wasser aus den Bergen abhängig sein
07.07.2020 | Universität Zürich

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

09.07.2020 | Physik Astronomie

Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen

09.07.2020 | Biowissenschaften Chemie

Selbstadaptive Systeme: KI übernimmt Arbeit von Software-Ingenieuren

09.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics