Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Satellit GOCE zeigt Gravitationskraft im Himalaya

05.05.2010
Seit gut einem Jahr umkreist der ESA-Satellit GOCE die Erde und vermisst so exakt wie kein Instrument zuvor ihr Schwerefeld. Auch in unwegsamen Regionen wie dem Himalaya die Gravitationskraft detailgenau zu bestimmen, ist das Ziel der Forscher, darunter Wissenschaftler der Technischen Universität München (TUM).

Die Auswertung der ersten Daten deutet nun an, dass die bisherigen Modelle des Schwerefeldes in Teilen der Erde tatsächlich gründlich überholt werden können. Davon erwarten die Forscher ein besseres Verständnis vieler Prozesse wie etwa Erdbeben oder Ozeanströmungen. Ein weiterer Erfolg: Der Satellit schafft es voraussichtlich, eine deutlich längere Zeit im All zu arbeiten als geplant.

Die Gravitation ist eine der Grundkräfte der Natur, die aber keinesfalls überall gleich groß ist. Die Erdrotation, die Höhenunterschiede der Erdoberfläche und die Beschaffenheit der Erdkruste bewirken deutliche Unterschiede im globalen Schwerefeld. Diese in bislang unerreichter Genauigkeit zu messen und damit zum Verständnis ihrer Auswirkungen beizutragen, ist die Aufgabe von GOCE (Gravity Field and Steady-State Ocean Circulation Explorer), der am 17. März 2009 in die Erdumlaufbahn geschossen wurde. Außerdem soll auf dieser Grundlage ein möglichst exaktes Geoid ermittelt werden. So heißt der virtuelle Meeresspiegel eines globalen, ruhenden Ozeans, der beispielsweise als Höhenreferenz bei Bauprojekten genutzt wird.

In den vergangenen Monaten haben Wissenschaftler des GOCE Gravity Consortiums, einer Gruppe von zehn europäischen Instituten aus sieben Ländern, Daten des Satelliten bearbeitet, um sie für die Modellberechnungen nutzbar zu machen. Schon jetzt können sie erkennen, dass GOCE einen deutlichen Fortschritt der Kartierungen ermöglichen wird. „Es kristallisiert sich heraus, dass wir gute Informationen für geophysikalisch interessante Regionen bekommen“, sagt TUM-Geodät Prof. Reiner Rummel, der Vorsitzende des Konsortiums, der in dieser Woche auf der Jahrestagung der European Geosciences Union in Wien diese ersten Zwischenergebnisse der Mission vorstellen wird.

Vor allem im Himalaya, in Teilen Afrikas und in den Anden vermuteten die Wissenschaftler große Ungenauigkeiten bisheriger Berechnungen, die mit herkömmlichen Methoden durchgeführt wurden. Tatsächlich bestätigen die ersten Auswertungen der GOCE-Daten diese Hypothese. „Messungen, die von der Erdoberfläche aus in schwer zugänglichen Bereichen gemacht werden, bergen ein hohes Fehlerrisiko“, erklärt Rummel. „Der Satellit hat damit natürlich kein Problem.“

Nicht nur die Daten, auch der Satellit selbst zeigt sich äußerst robust. Ursprünglich sollte er ab Oktober ein Jahr lang die eigentlichen Messungen vornehmen, mit einer Pause nach sechs Monaten. Doch GOCEs Energieversorgung arbeitet so gut und seine Stabilität ist so hoch, dass diese Ruhephase nicht nötig war. „Unsere Hoffnung ist, dass wir sogar drei bis vier Jahre durchmessen können“, sagt Rummel. Dabei wandert GOCE auf einer äußerst anspruchsvollen Strecke: Seine Arbeitshöhe von 255 Kilometern ist die niedrigste Bahn, auf der jemals ein wissenschaftlicher Satellit die Erde umlaufen hat. Damit er nicht abstürzt, muss er ständig mit Ionentriebwerken nachgesteuert werden. „Das funktioniert hervorragend“, freut sich Rummel. Zur Hilfe kommt der Mission die Sonne, die sich in den vergangenen Monaten ausnehmend ruhig verhalten hat. Eine stärkere Aktivität würde den Luftwiderstand erhöhen und damit die Steuerung schwieriger machen.

Die Wissenschaftler erwarten von der Mission ein besseres Verständnis für viele Prozesse in der Erde und an der Oberfläche. Da die Gravitation in direktem Zusammenhang mit der Masseverteilung im Erdinnern steht, kann eine detaillierte Kartierung dazu beitragen, die Dynamik in der Erdkruste besser zu verstehen. Warum und wo sich die Kontinentalplatten bewegen und Erdbeben verursachen, ist besonders für Regionen an den Plattenrändern wie den Himalaya und die Anden von großer Bedeutung. Die Forscher hoffen, dass die Mission langfristig zu einem Erdbebenwarnsystem beitragen könnte.

Auch die Ozeanströmungen wollen die Wissenschaftler mithilfe der neuen Daten erstmals detailgenau erfassen. Veränderungen der Zirkulation und des Meersspiegels sind wiederum entscheidend für alle globalen Klimastudien. Bislang hatte man die Meeresströme hauptsächlich aus mathematischen Modellrechnungen erschlossen.

Das Vermessungswesen soll von den GOCE-Daten ebenso profitieren. Anhand der exakten Referenzfläche können Höhen der Erdoberfläche auf unterschiedlichen Kontinenten korrekt miteinander verglichen werden. In Kombination mit Messungen von Satellitennavigationssystemen (zum Beispiel GPS oder GALILEO) soll es künftig möglich sein, jedem Nutzer solche Angaben auf den Zentimeter genau zur Verfügung zu stellen. Nicht zuletzt wird die Planung von Straßen-, Tunnel- und Brückenbauten einfacher.

Mit den vorbearbeiteten Daten werden die Wissenschaftler des Konsortiums, koordiniert an der TU München, nun ein erstes globales Schwerefeldmodell entwickeln. Es soll auf dem Living Planet Symposium der Europäischen Weltraumbehörde ESA Ende Juni im norwegischen Bergen vorgestellt werden.

Hintergrundinformation:
TUM-Wissenschaftler Prof. Reiner Rummel ist einer der Initiatoren von GOCE und Vorsitzender des European GOCE Gravitiy Consortiums. Diese Gruppe von zehn europäischen Instituten aus sieben Ländern wertet die wissenschaftlichen Daten aus. An der TUM wird die satellitengestützte Geodäsie vom Institute for Advanced Study unterstützt, das herausragenden Wissenschaftlern langfristige Forschungsprojekte ermöglicht.

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Vom Verschwinden der peruanischen Gletscher
02.10.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics