Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

23.11.2017

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein. Voraussetzung dafür ist, dass der Mond einen porösen Kern hat, sodass Wasser des darüberliegenden globalen Ozeans in den Kern eindringen kann und dort durch die Reibungswärme erhitzt wird.


Oberfläche, Ozean und Kern des Saturnmondes Enceladus. Eine Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt.

Quelle: Oberfläche – NASA/JPL-Caltech/Space Science Institute; Kern – Choblet et al (2017); Komposition der Grafik – ESA

Das zeigt eine Computersimulation, die im Rahmen der europäisch-amerikanischen Cassini-Huygens-Mission entstanden ist. Sie bietet auch eine Antwort auf die lange ungelöste Frage, woher die Energie stammt, die die Existenz von flüssigem Wasser auf dem kleinen, kryovulkanisch aktivem Mond fern der Sonne ermöglicht. An den Untersuchungen war auch die Forschungsgruppe von Privatdozent Dr. Frank Postberg, Planetologe an der Universität Heidelberg, beteiligt.

Bereits 2015 konnten die Wissenschaftler zeigen, dass es hydrothermale Aktivität auf dem Saturnmond geben muss. Aus Eisvulkanen schleudert Enceladus feinste Gesteinskörner in riesigen Fontänen aus Gas und Wassereis in den Weltraum. Diese Partikel konnten mit einem Detektor der Raumsonde Cassini erfasst werden.

Sie stammen vom Grund eines über 50.000 Meter tiefen Ozeans, der sich unter einer drei bis 35 Kilometer dicken Eiskruste von Enceladus erstreckt. Mit Computersimulationen und Laborexperimenten fanden die Wissenschaftler Hinweise darauf, dass es in der Tiefe zu einer Wechselwirkung zwischen Gestein und Wasser kommt – bei Temperaturen von mindestens 90 Grad Celsius.

Doch woher kommt die Energie für diese Hydrothermalsysteme, die den Transport von Materie antreiben? Und wie genau gelangen die Gesteinspartikel an die Oberfläche des Eismondes?

Die aktuellen Untersuchungen unter Federführung der Universität Nantes (Frankreich) bieten dafür eine Erklärung. Wie Dr. Postberg erläutert, ist der Gesteinskern von Enceladus vermutlich porös. Daher kann das Wasser des darüberliegenden Ozeans tief in den Kern eindringen. Gleichzeitig wirken starke Gezeitenkräfte, die der Saturn auf seinen Mond ausübt, auf das „lose“ Gestein des Kerns ein.

Die neue Computersimulation zeigt, dass dadurch Reibungswärme sehr effizient auf das durch den Kern spülende Wasser übertragen und dieses auf über 90 Grad Celsius erwärmt wird. Einige Bestandteile des Gesteinskerns werden dabei im so erhitzten Wasser gelöst. Die hydrothermalen Fluide strömen an bestimmten Punkten – den Hotspots – wieder in den Ozean. Durch die Abkühlung fallen Teile des gelösten Materials als feine Partikel aus und werden mit dem warmen Wasser an die Ozeanoberfläche transportiert. Die Hotspots liegen bevorzugt an den Polen von Enceladus.

Die aufsteigenden hydrothermalen Fluide lösen vermutlich lokale Schmelzvorgänge in der Eisschicht der Polregion aus. Dies erklärt nach den Worten von Dr. Postberg, warum die Eisschicht an den Polen mit drei bis zehn Kilometern deutlich dünner ist als am Äquator, wo sie 35 Kilometer dick ist. „Am Südpol kann das Wasser durch Spalten sogar bis nahe an die Mondoberfläche aufsteigen. Dort werden die mikroskopisch kleinen Gesteinskörner aus dem Kern zusammen mit Eispartikeln ins All geschleudert, wo sie dann von den Instrumenten der Raumsonde Cassini erfasst werden konnten“, so der Heidelberger Planetologe.

Die Untersuchung zeigt auch, dass nur mit dieser Wärmequelle im Kern der darüberliegende flüssige Ozean aufrecht gehalten werden kann. Sonst würde er in weniger als 30 Millionen Jahren komplett ausfrieren. Dr. Postberg forscht am Klaus-Tschira-Labor für Kosmochemie, das am Institut für Geowissenschaften der Universität Heidelberg angesiedelt ist und von der Klaus Tschira Stiftung gefördert wird.

Die Cassini-Huygens-Mission wurde 1997 als gemeinsames Projekt der NASA und der ESA sowie der italienischen Raumfahrtagentur ASI mit dem Ziel gestartet, neue Erkenntnisse über den Gasplaneten Saturn und seine Monde zu gewinnen. Von 2004 an umkreiste die Raumsonde Cassini den Saturn, bis die Mission im September dieses Jahres mit dem Eintritt der Sonde in die Saturnatmosphäre endete. Die jüngsten Forschungsergebnisse wurden in der Fachzeitschrift „Nature Astronomy“ veröffentlicht.

Originalpublikation:
G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg & O. Souček: Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy (published online 6 November 2017), doi: 10.1038/s41550-017-0289-8

Kontakt:
Privatdozent Dr. Frank Postberg
Institut für Geowissenschaften
Klaus-Tschira-Labor für Kosmochemie
Tel. +49 6221 54-8209
frank.postberg@geow.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.geow.uni-heidelberg.de/researchgroups/postberg/

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Grönlands Eispanzer schrumpft immer schneller – Geodäten der TUD werten Satellitendaten für internationale Studie aus
11.12.2019 | Technische Universität Dresden

nachricht Zukunft der Meeresspiegel
11.12.2019 | Deutsches Klima-Konsortium e.V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hochgeladenes Ion bahnt den Weg zu neuer Physik

11.12.2019 | Physik Astronomie

Grönlands Eispanzer schrumpft immer schneller – Geodäten der TUD werten Satellitendaten für internationale Studie aus

11.12.2019 | Geowissenschaften

Sensoraufkleber überwacht Lebensmittelproduktion

11.12.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics