Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechenrekord auf dem SuperMUC

15.04.2014

Erdbebensimulation erzielt mehr als eine Billiarde Rechenoperationen pro Sekunde.

Ein Team aus Informatikern, Mathematikern und Geophysikern der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) haben – mit Unterstützung durch das Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften (LRZ) – die an der LMU entstandene Erdbebensimulationssoftware SeisSol auf dem Höchstleistungsrechner SuperMUC des LRZ so effizient optimiert, dass die „magische“ Marke von einem Petaflop pro Sekunde geknackt wurde – einer Rechenleistung von einer Billiarde Rechenoperationen pro Sekunde.


Visualisierung von Schwingungen im Inneren des Vulkans Merapi auf der Insel Java, erstellt mit dem Programm SeisSol auf dem SuperMUC

Bild: Alex Breuer (TUM) / Christian Pelties (LMU)

Mithilfe der Erdbebensimulationssoftware SeisSol erforschen Geophysiker Bruchprozesse und seismische Wellen im Untergrund der Erde. Ihr Ziel ist es, Erdbeben möglichst realistisch zu simulieren, um auf zukünftige Ereignisse besser vorbereitet zu sein und um die zugrunde liegenden Mechanismen besser zu verstehen. Die Berechnung dieser Simulationen ist jedoch so komplex, dass selbst Supercomputer an ihre Grenzen stoßen.

Im Rahmen einer Kooperation passten nun die Arbeitsgruppen um Dr. Christian Pelties vom Department für Geo- und Umweltwissenschaften der LMU und Professor Michael Bader vom Institut für Informatik der TU München das Programm SeisSol so an die Parallelrechenstruktur des Garchinger Höchstleistungsrechners SuperMUC an, dass die Berechnungen um einen Faktor Fünf schneller wurden. Mit einem virtuellen Experiment erreichten sie auf dem SuperMUC einen neuen Rekord: Um Vibrationen innerhalb des geometrisch sehr komplizierten Vulkans Merapi auf der Insel Java zu simulieren, führte der Supercomputer 1,09 Billiarden Rechenoperationen pro Sekunde durch. SeisSol konnte diese ungewöhnlich hohe Rechenleistung über die gesamte Laufzeit von drei Stunden halten und nutzte dabei alle 147.456 Rechenkerne des SuperMUC.

Möglich wurde das durch eine umfassende Optimierung und die komplette Parallelisierung aller 70.000 Codezeilen von SeisSol, das nun Rechenleistungen von bis zu 1,42 Petaflop pro Sekunde erzielen kann. Dies entspricht 44,5 Prozent der theoretisch auf dem SuperMUC verfügbaren Leistung. Damit gehört SeisSol weltweit zu den effizientesten Simulationsprogrammen seiner Art. „Dank der nun möglichen hohen Rechenleistungen können wir fünf Mal so viele oder größere Modelle durchrechnen und erreichen deutlich präzisere Ergebnisse. Unsere Simulationen kommen so der Realität immer näher“, sagt der Geophysiker Dr. Christian Pelties vom Department für Geo- und Umweltwissenschaften der LMU. „Damit wird es möglich, viele grundlegende Mechanismen von Erdbeben besser zu verstehen, um hoffentlich besser auf zukünftige Ereignisse vorbereitet zu sein.“

Als nächste Schritte sind Simulationen von Erdbeben geplant, die sowohl den Bruchprozess auf der Meterskala als auch die dadurch erzeugten zerstörerischen seismischen Wellen simulieren, die sich über hunderte Kilometer ausbreiten. Die Ergebnisse sollen das Verständnis von Erdbeben verbessern und eine genauere Einschätzung möglicher zukünftiger Ereignisse ermöglichen. „Die Beschleunigung der Simulationssoftware um einen Faktor Fünf ist nicht nur für die geophysikalische Forschung ein wichtiger Fortschritt“, sagt Professor Michael Bader vom Institut für Informatik der TU München. „Zugleich bereiten wir die verwendeten Methoden und Softwarepakete schon für die nächste Generation von Supercomputern vor, auf denen entsprechende Simulationen routinemäßig für verschiedene Anwendungen in den Geowissenschaften eingesetzt werden sollen“.

Gefördert wurde das Projekt von der Volkswagen Stiftung (Projekt ASCETE), vom Kompetenznetzwerk für Wissenschaftliches Höchstleistungsrechnen in Bayern (KONWIHR), von der Deutschen Forschungsgemeinschaft und durch das Leibniz Rechenzentrum der Bayerischen Akademie der Wissenschaften. Die Weiterentwicklung von SeisSol wird zudem unterstützt durch die Projekte „DEEP Extended Reach“, VERCE und QUEST der Europäischen Kommission.

Am Projekt arbeiteten neben Michael Bader und Christian Pelties außerdem Alexander Breuer, Dr. Alexander Heinecke und Sebastian Rettenberger (TUM) sowie Dr. Alice-Agnes Gabriel Stefan Wenk (LMU) mit. Die Ergebnisse werden im Juni auf der International Supercomputing Conference in Leipzig (ISC’14, Leipzig, 22.-26 Juni 2014) vorgestellt (Titel: Sustained Petascale Performance of Seismic Simulations with SeisSol on SuperMUC)

Links:
Programm SeisSol: http://seissol.geophysik.uni-muenchen.de/
ASCETE Sudelfeld Summit: http://www.ascete.de
Website des Höchstleistungsrechners SuperMUC: http://www.lrz.de/supermuc/
International Supercomputing Conference 2014: http://www.isc-events.com/isc14/home.html

Kontakt:
Prof. Dr. Michael Bader
Institut für Informatik, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany, Tel.: +49 89 35831 7810, E-Mail: bader@in.tum.de, Internet: http://www5.in.tum.de/~bader/

Dr. Christian Pelties
Geophysik, Department für Geo- und Umweltwissenschaften, Ludwig-Maximilians Universität München, Theresienstraße 41, 80333 München, Germany, Tel.: +49 89 2180 4214,

E-Mail: pelties@geophysik.uni-muenchen.de,

Internet: http://www.geophysik.uni-muenchen.de/Members/pelties

Dr. Ellen Latzin | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Biber verändern das Gesicht der Arktis
16.07.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics