Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quo vadis Antarktisches Bodenwasser? Export der bedeutendsten Tiefenwassermasse der Südhalbkugel ist störungsanfällig

22.01.2020

Die Bildung von Tiefenwasser, das eine wichtige und empfindliche Stellschraube im Klimasystem darstellt, findet nur in wenigen Teilen der Weltmeere statt. Neben der bekanntesten Region im subpolaren Nordatlantik geschieht dies auf der Südhalbkugel nur an wenigen Stellen, insbesondere im Weddellmeer in der Antarktis. Dort wird das sogenannte Antarktische Bodenwasser gebildet. Während sich diese Wassermasse heute nordwärts in die anderen Ozeanbecken verteilt, zeigen Ergebnisse einer neuen Studie unter Leitung des GEOMAR und Kooperation mit dem Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung in Bremerhaven, dass dies unter klimatisch extremen Bedingungen anders war.

Meeresströmungen sind für die globale Umverteilung von Wärme und damit auch für das Klima auf der Erde von essentieller Bedeutung. Durch die Tiefenwasserbildung rund um die Antarktis wird zum Beispiel Sauerstoff in die Tiefsee transportiert.


Strömungsregime des atlantischen Sektors des Südozeans zu Zeiten maximaler Vereisung.

Grafik: M. Gutjahr

Das im Weddellmeer entstehende Antarktische Bodenwasser (AABW) breitet sich normalerweise nordwärts in den Südatlantik und Indischen Ozean aus. Während der Höhepunkte der beiden letzten Eiszeiten war die Zufuhr des Tiefenwassers in den südlichen Atlantik offenbar unterbrochen, wie eine neue Studie unter Leitung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel zeigt.

„Bisher war die Wissenschaft der Auffassung, dass Antarktisches Bodenwasser auch während der Eiszeiten gebildet und in weite Teile des Südozeans exportiert wurde“, erläutert Dr. Marcus Gutjahr, Koautor der Studie vom GEOMAR.

„Möglicherweise fand die Tiefenwasserbildung statt, doch zirkulierte diese im Gegensatz zu heute nachweislich nicht in den südlichen Atlantik“, so Gutjahr weiter. Höchstwahrscheinlich ist eine generell verlangsamte Zirkulation des Südozeans während der Kaltzeiten für dieses Aussetzen des AABW-Exports verantwortlich.

Die Autoren der Studie, die jetzt in der Fachzeitschrift Nature Communications erschienen ist, haben verschiedene Sedimentkernproben aus dieser Region ausgewertet. In den Proben haben die Wissenschaftler mit Hilfe von Neodym- und Blei-Isotopensignaturen die Herkunft des Tiefenwassers über die letzten beiden größten Vereisungsphasen der letzten 140.000 Jahre bestimmen können.

„Während aus den Sedimenten gelöste Neodym-Isotope Auskunft über die Herkunft des Bodenwassers geben, stecken in Blei-Isotopensignaturen Informationen über die durchschnittliche Zusammensetzung der gesamten Wassersäule“, erläutert Erstautor der Studie, Dr. Huang Huang, vom GEOMAR.

Das Ergebnis der Studie ist insofern überraschend, als dass ähnliche Störungen des AABW-Exports auch während des klimatischen Optimums des letzten Interglazials (Warmzeit) vor etwa 128.000 Jahren nachgewiesen wurden.

Diese könnten durch starkes Schmelzen vor allem im Bereich des Westantarktischen Eisschildes verursacht worden sein, ein Effekt, der mit großer Wahrscheinlichkeit auch in einem zukünftig wärmeren Klima auftreten wird.

„Im Ergebnis kann sich durch eine solche Störung in der Tiefenzirkulation langfristig das gesamte Wärmebudget des Südozeans und dessen Fähigkeit, Wärme aus der Atmosphäre aufzunehmen, signifikant verändern.“, so Dr. Gutjahr. Die Eigenschaften des heute gebildeten Antarktischen Tiefenwassers haben sich über die letzten Jahrzehnte bereits nachweislich verändert.

Es ist heute wärmer, weniger salzhaltig und weniger voluminös, was für geringere Bildungsraten spricht. Letztendlich legen die neuen Ergebnisse nahe, dass die Rahmenbedingungen für den Export Antarktischen Tiefenwassers aus dem Weddellmeer weder in extremen Kalt- oder Warmphasen gegeben sind.

Die Eindeutigkeit der neuen Ergebnisse verdankt dieses Projekt nicht zuletzt auch der einzigartigen Sedimentkernsammlung des Alfred-Wegener-Instituts in Bremerhaven sowie der Zusammenarbeit mit dem dortigen Wissenschaftler und Koautor Dr. Gerhard Kuhn.

In einem nächsten Schritt will Dr. Gutjahr genauer den Export von AABW aus dem Weddellmeer im Ausstromgebiet ins Scotiameer näher an der Antarktis untersuchen. So können klimatisch instabile Zeiten der letzten Millionen Jahre erforscht werden.

Dafür stehen neue Proben zur Verfügung, die während einer internationalen Expedition im Rahmen des International Ocean Discovery Program (IODP-Expedition 382) Anfang 2019 gewonnen wurden. Mittelfristig sollen dann auch Proben aus anderen Regionen des südlichen Ozeans hinzukommen, um die Ausbreitungspfade in andere Ozeanbecken genauer zu untersuchen.

Es ist ein durchaus langwieriges Detektivspiel, mit dem die Forschenden mehr über Kontrollmechanismen des Klimas der Südhalbkugel erfahren wollen.

„Ultimativ verfolgen wir das Ziel, voraussagen zu können, unter welchen klimatischen Rahmenbedingungen welche Teile des Antarktischen Eisschildes substanziell schmelzen werden und welche unmittelbaren Effekte dies für die Zirkulation des Südozeans hat“, so Gutjahr abschließend.

Originalpublikation:

Huang H., M. Gutjahr, A. Eisenhauer and G. Kuhn, 2020: No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum. Nature Communications, doi: 10.1038/s41467-020-14302-3

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.geomar.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Schiffsexpedition bringt Licht ins Innere der Erde
24.02.2020 | Leibniz Universität Hannover

nachricht Wie Erdbeben die Schwerkraft verformen
24.02.2020 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics