Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was passiert im Meer, wenn Dauerfrostböden ihre Kohlenstoff-Depots frei geben?

07.03.2011
Zu den Folgen der Erderwärmung: Können marine Mikroorganismen die aus auftauenden Dauerfrostböden freigesetzte organische Substanz zu CO2 zersetzen und so den Treibhauseffekt verstärken?

Ein neues Großprojekt am IOW widmet sich der Abbaubarkeit von terrigenem, organischem Kohlenstoff im Meer. In den Dauerfrostböden arktischer Zonen lagern bis zu 60% des weltweiten, in Böden gebundenen Kohlenstoffs.

Es ist derzeit zu beobachten, dass die globale Erwärmung zu einem vermehrten Abtauen der Böden in Tundra und Taiga führt. Dabei werden auch organische Kohlenstoff-Verbindungen freigesetzt (zum Beispiel Huminstoffe), die über die Flüsse letztlich auch in den Weltozean gelangen können. Wenn diese Kohlenstoffverbindungen dann mikrobiell abgebaut werden, entsteht CO2. Gelangt es in die Atmosphäre, kann eine weitere Verschärfung des Treibhauseffektes ausgelöst werden.

Auf diesem Szenario fußt ein neues, von der Leibniz-Gemeinschaft gefördertes Forschungsprojekt unter der Leitung des Warnemünder Meeresbiologen Prof. Dr. Klaus Jürgens. „ATKiM“ (Abbaubarkeit von arktischem terrigenem Kohlenstoff im Meer) untersucht, in welchem Ausmaß die ins Meer eingetragenen organischen Kohlenstoffverbindungen (unter Freisetzung von CO2) abgebaut werden und durch welche Umweltfaktoren (wie z.B. Salinität, Einstrahlung, Nährstoffe) dies beeinflusst wird. Das Projektkonsortium wird dabei auch der Frage nachgehen, aus welchen chemischen Komponenten dieses Kohlenstoffgemisch besteht und welche Bakterien zu ihrem Abbau befähigt sind. Bislang wurde angenommen, dass die organischen Kohlenstoffverbindungen aus den Dauerfrostböden refraktärer Natur sind und somit von Mikroorganismen kurzfristig nicht abgebaut werden können. In jüngster Zeit mehrten sich jedoch Hinweise, die dies in Frage stellen.

Für ATKiM hat das IOW Wissenschaftler aus 9 Instituten in einem Netzwerk integriert, um deren komplementäre Expertisen langfristig für die Bearbeitung dieser Fragestellungen zu bündeln. Sowohl die Analyse einer Vielzahl chemischer Komponenten im freigesetzten organischen Kohlenstoff, als auch die Identifikation der am Abbau beteiligten Mikroorganismen, deren Aktivitäten und genetischen Grundlagen stellen große methodische Herausforderungen dar. Erst neueste Entwicklungen in der hochauflösenden Massenspektrometrie, Genomik und Proteomik lassen es möglich erscheinen, die Mechanismen dieses Prozesses besser zu verstehen. Dafür werden in diesem Projekt Molekular- und Mikrobiologen mit marinen Umweltchemikern im Rahmen gemeinsamer Forschungsfahrten und laborgestützter Experimente eng zusammenarbeiten. Die nördliche Ostsee, in welche arktische Flüsse aus Nordskandinavien entwässern, wird dabei als ein großes „Freiland-Laboratorium“ und Modellsystem dienen.

Die Ergebnisse aus ATKiM werden dazu beitragen, bessere Vorhersagen für zu erwartende CO2-Emissionen aus nördlichen Meeresgebieten machen zu können. Ein besonderes Augenmerk liegt auf der interdisziplinären Ausbildung der insgesamt 6 beteiligten Doktoranden, beispielsweise durch jährlich stattfindende gemeinsame „Summer Schools“ mit nationaler und internationaler Beteiligung.

Ein erstes Planungstreffen aller beteiligten Wissenschaftler findet am 9.März im IOW statt, die erste Fahrt mit dem Forschungsschiff FS Meteor in die nördliche Ostsee ist für den November angesetzt.

Das Netzwerk AtKim wird in einem Exzellenzprogramm der Leibniz-Gemeinschaft im Rahmen des Pakts für Forschung und Innovation gefördert. Für die nächsten drei Jahre stehen dem Konsortium Fördermittel in Höhe von rund 1.3 Mio. Euro zur Verfügung.

Partner im Atkim-Netzwerk sind:

•Leibniz-Institut für Ostseeforschung Warnemünde, Sektionen Biologische Meereskunde und Meereschemie
•Universität Rostock, Lehrstuhl für Analytische Chemie
•Museum für Naturkunde Berlin
•Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
•Leibniz-Institut für Gewässerökologie und Binnenfischerei, Berlin
•Ernst-Moritz-Arndt-Universität Greifswald, Pharmazeutische Biotechnologie
•Max-Planck-Institut für Marine Mikrobiologie gemeinsam mit der Jacobs University, Bremen
•Max-Planck-Institut für Marine Mikrobiologie gemeinsam mit dem Institut für die Chemie und Biologie der Meere, Uni Oldenburg

•Universität Stockholm, Department of Applied Environmental Science

Kontakt: Prof. Klaus Jürgens, Sektion Biologische Meereskunde, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 5197 250, klaus.juergens@io-warnemuende.de

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 86 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesamtgesellschaftlich relevante Fragestellungen strategisch und themenorientiert. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. (www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw
Weitere Informationen:
http://www.leibniz-gemeinschaft.de
http://www.io-warnemuende.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Das Projekt „mDRONES4rivers“ startet in die Flugsaison
21.03.2019 | Bundesanstalt für Gewässerkunde

nachricht Mit dem Forschungsflugzeug ins ewige Eis - Meteorologen starten Messkampagne
20.03.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Zähmung der Lichtschraube

Wissenschaftler vom DESY und MPSD erzeugen in Festkörpern hohe-Harmonische Lichtpulse mit geregeltem Polarisationszustand, indem sie sich die Kristallsymmetrie und attosekundenschnelle Elektronendynamik zunutze machen. Die neu etablierte Technik könnte faszinierende Anwendungen in der ultraschnellen Petahertz-Elektronik und in spektroskopischen Untersuchungen neuartiger Quantenmaterialien finden.

Der nichtlineare Prozess der Erzeugung hoher Harmonischer (HHG) in Gasen ist einer der Grundsteine der Attosekundenwissenschaft (eine Attosekunde ist ein...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Zähmung der Lichtschraube

22.03.2019 | Physik Astronomie

Saarbrücker Forscher erleichtern durch Open Source-Software den Durchblick bei Massen-Sensordaten

22.03.2019 | HANNOVER MESSE

Ketten aus Stickstoff direkt erzeugt

22.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics