Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Manganknollen: Forschungsprojekt zur Umweltbelastung beim Tiefsee-Bergbau

08.11.2019

Sie haben etwa die Größe einer Kartoffel: Manganknollen, deren Abbau am Ozeanboden in 3000 bis 6000 Meter Tiefe zur Versorgung der Industrieländer mit kritischen Rohstoffen beitragen soll. Ein internationales von der Europäischen Union finanziertes Forschungsprojekt unter Beteiligung der Jacobs University Bremen arbeitet nun daran, die zu erwartenden negativen Umwelteinflüsse des Rohstoffabbaus in der Tiefsee möglichst gering zu halten.

Manganknollen finden sich auf großen Teilen der Ozeanböden in mehreren Kilometern Tiefe. Insbesondere auf dem Boden der Clarion-Clipperton-Zone, die sich von der Westküste von Mexiko bis tief in den Pazifik erstreckt, sind riesige Felder dieser polymetallischen Knollen vorhanden.


Benjamin Gillard mit Manganknollen aus 4100 Meter Wassertiefe.

Privat


BlueHarvesting: Prof. Laurenz Thomsen von der Jacobs University betreut das Forschungsprojekt zur Umwelt-Belastung beim Tiefsee-Bergbau.

Jacobs University

Sie enthalten erhebliche Mengen an Kobalt, Nickel und Kupfer – Erze, die zum Beispiel wichtig sind für die Herstellung von Lithium-Ionen-Akkus, Smartphones, Laptops oder E-Autos.

Geborgen werden sollen die Knollen mithilfe eines Kollektors, der einem Unterwasser-Staubsauger ähnelt. „Diese Maschine sammelt die Knollen ein und entfernt etwa zehn Zentimeter des Sediments“, erklärt Benjamin Gillard, Wissenschaftler im Team von Prof. Laurenz Thomsen, dem Leiter des Ocean Lab an der Jacobs University, der das Projekt betreut.

Dabei entstehen große Wolken von Schwebstoffen, die das Leben in den Abbaugebieten und in einigen Kilometer Entfernung schwer beeinträchtigen.

Ziel der Forscher ist es nun, die Größe dieser Wolken zu reduzieren. Hierbei geht es vor allem um die Verbesserung der Strömungsdynamik des Kollektors und um die Beeinflussung von Turbulenzen.

„Die Sedimente bestehen aus vielen kleinen, klebrigen Partikeln“, erläutert Gillard. „Sie bilden größere Aggregate, die dann zu Boden sinken. Je schneller dies passiert, desto geringer sind die Ausbreitung der Wolke und die Auswirkungen auf das Ökosystem.“

An dem interdisziplinären Forschungsprojekt mit dem Titel „BlueHarvesting: Hydraulic Collector for Polymetallic Nodules from the Deepsea“ („Ernte im Blauen“) sind Universitäten und Industriepartner aus Deutschland, den Niederlanden, Dänemark, Spanien und Großbritannien beteiligt. Es wird im Zuge von „Horizon2020“ finanziert, dem Rahmenprogramm der Europäischen Union für Forschung und Innovation.

Über die Jacobs University Bremen:
In einer internationalen Gemeinschaft studieren. Sich für verantwortungsvolle Aufgaben in einer digitalisierten und globalisierten Gesellschaft qualifizieren. Über Fächer- und Ländergrenzen hinweg lernen, forschen und lehren.

Mit innovativen Lösungen und Weiterbildungsprogrammen Menschen und Märkte stärken. Für all das steht die Jacobs University Bremen. 2001 als private, englischsprachige Campus-Universität gegründet, erzielt sie immer wieder Spitzenergebnisse in nationalen und internationalen Hochschulrankings.

Ihre mehr als 1600 Studierenden stammen aus mehr als 120 Ländern, rund 80 Prozent sind für ihr Studium nach Deutschland gezogen. Forschungsprojekte der Jacobs University werden von der Deutschen Forschungsgemeinschaft oder aus dem Rahmenprogramm für Forschung und Innovation der Europäischen Union ebenso gefördert wie von global führenden Unternehmen.

Weitere Informationen:

http://www.jacobs-university.de

Heiko Lammers | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes
18.02.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Warum Lebewesen schrumpfen
18.02.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics