Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetismus im Erdmantel entdeckt

06.06.2019

Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist. Die altbekannten Quellen des Magnetfelds sind der tief im Inneren liegende Erdkern, aber auch der Boden, auf dem wir stehen – die Erdkruste. Der Erdmantel hingegen wurde bisher weitestgehend als „magnetisch tot“ angesehen. Nun zeigen Forscher, dass eine Form des Eisenoxids, das Hämatit, auch im Erdmantel seine magnetischen Eigenschaften behalten kann. Die Studie ist in der Fachzeitschrift „Nature“ erschienen.

Das riesige Magnetfeld, das die Erde umgibt, sie vor Strahlen und geladenen Teilchen aus dem All schützt und an dem sich viele Tiere sogar orientieren können, ist in ständigem Wandel – weshalb es auch unter ständiger Beobachtung von Geowissenschaftlern ist.


Die altbekannten Quellen des Erdmagnetfelds sind der bis etwa 6.000 Kilometer im Erdinneren liegende Kern, aber auch der Boden, auf dem wir stehen – die Erdkruste. Der Erdmantel hingegen, 35 bis 2.900 Kilometer tief, wurde bisher weitestgehend als „magnetisch tot“ angesehen.

Ein internationales Forscherteam aus Deutschland, Frankreich, Dänemark und den USA hat nun gezeigt, dass eine Form des Eisenoxids, das Hämatit, auch tief im Erdmantel seine magnetischen Eigenschaften behalten kann. Das passiert in verhältnismäßig kalten Gesteinsplatten, die vor allem unter dem Westpazifischen Ozean vorkommen.

„Das neue Wissen über den Erdmantel und die stark magnetische Region im Westpazifik könnte ein neues Licht auf die Beobachtungen des Erdmagnetfelds werfen“, sagt Mineralphysiker und Erstautor Dr. Ilya Kupenko vom Institut für Mineralogie an der Westfälischen Wilhelms-Universität Münster (WWU).

Zum Beispiel können die Erkenntnisse für zukünftige Beobachtungen der erdmagnetischen Auffälligkeiten relevant sein. Darüber hinaus könnten sie auch Aufschlüsse über den Magnetismus anderer Planeten wie den Mars geben. Der Grund: Der Mars besitzt keinen sogenannten Dynamo in seinem Kern und damit auch keine Quelle, um ein starkes Magnetfeld wie die Erde aufzubauen – es könnte sich nun aber lohnen, einen genaueren Blick auf seinen Mantel zu werfen. Die Studie ist in der Fachzeitschrift „Nature“ erschienen.

Hintergrund und Methode:

Tief im metallischen Erdkern ist es flüssiges Eisen, das elektrische Ströme auslöst. In der äußersten Erdkruste wiederum rufen Gesteine die magnetischen Signale hervor. Aufgrund der sehr hohen Temperaturen und Druckbedingungen in den tieferen Regionen des Erd-Inneren war angenommen worden, dass Gesteine ihre magnetischen Eigenschaften verlieren.

Die Forscher sahen sich nun die potenziellen Quellen für Magnetismus im Erdmantel genauer an: Eisenoxide, die eine hohe kritische Temperatur aufweisen – sprich die Temperatur, ab der Materialien ihre magnetischen Eigenschaften verlieren. Eisenoxide treten im Erdmantel in Gesteinsplatten auf, die durch Plattenverschiebungen von der Erdkruste weiter in den Mantel gedrückt wurden.

Die Platten können eine Tiefe zwischen 410 und 660 Kilometer im Erdinneren erreichen, die sogenannte Übergangszone zwischen dem oberen und unteren Erdmantel. Bisher war es allerdings nicht gelungen, die magnetischen Eigenschaften des Eisenoxids während der extremen Druck- und Temperaturbedingungen zu messen, die dort unten herrschen.

Nun kombinierten die Wissenschaftler zwei Methoden miteinander. Mithilfe einer sogenannten Diamantstempelzelle, einem Verfahren, bei dem sehr kleine Materialproben zwischen zwei Diamanten zusammengepresst werden, übten sie einen Druck von bis zu 90 Gigapascal auf das Eisenoxid Hämatit aus. Zusätzlich erhitzten sie die winzige Gesteinsprobe mit einem Laser auf bis zu mehr als 1.000 Grad Celsius.

Dieses Verfahren kombinierten sie mit der sogenannten Mößbauer-Spektroskopie, bei der mithilfe von Synchrotron-Strahlen der magnetische Zustand der Proben untersucht werden kann. Dieser Teil der Studie wurde in der Synchrotronanlage ESRF in Grenoble (Frankreich) durchgeführt und machte es möglich, die Veränderungen des Eisenoxids zu beobachten.

Das überraschende Ergebnis: Das Hämatit blieb magnetisch bis zu einer Temperatur von rund 925 Grad – der Temperatur, die am Ort ihres Vorkommens in den „abgetauchten“ Platten im Erdmantel unter dem Pazifischen Ozean herrscht. „Damit zeigen wir, dass der Erdmantel bei weitem nicht so ,magnetisch tot‘ ist, wie zuvor angenommen“, sagt Prof. Dr. Carmen Sanchez-Valle vom Institut für Mineralogie der WWU. „Diese Erkenntnisse könnten Schlussfolgerungen für das gesamte Magnetfeld der Erde zulassen.“

Relevanz für Untersuchungen des Erdmagnetfelds und der Bewegung der Pole

Forscher beobachten das Erdmagnetfeld und die ständigen lokalen und regionalen Veränderungen in der magnetischen Stärke, indem sie Satelliten einsetzen und Gesteine untersuchen. Hintergrund: Die geomagnetischen Pole der Erde – nicht zu verwechseln mit den geografischen Polen – sind laufend in Bewegung.

Infolge ihrer Wanderung haben sie in der jüngeren Erdgeschichte sogar alle paar hunderttausend Jahre ihre Position miteinander getauscht. Der letzte Polsprung ereignete sich vor 780.000 Jahren, und seit ein paar Jahrzehnten berichten Wissenschaftler davon, dass sich die magnetischen Pole der Erde schneller bewegen. Ein Umdrehen der Magnetpole hätte Auswirkungen auf die moderne menschliche Zivilisation, zum Beispiel wären Satelliten weniger geschützt und die Funktion von Stromnetzen bedroht.

Eine der beobachteten Routen der Pole bei ihrer Wanderung verläuft über den Westpazifik – und stimmt damit auffällig mit den nun aufgedeckten elektromagnetischen Quellen im Erdmantel überein. Daher ziehen die Forscher die Möglichkeit in Betracht, dass die im Pazifik beobachteten Magnetfelder nicht die Wanderungsroute der auf der Erdoberfläche gemessenen Pole darstellen, sondern von der bisher unbekannten elektromagnetischen Quelle der Hämatit-haltigen Gesteine im Erdmantel unter dem Westpazifik stammen.

„Das neue Wissen, dass es dort unten im Erdmantel magnetisch geordnete Materialien gibt, sollte bei zukünftigen Untersuchungen des Magnetfelds der Erde und der Bewegung ihrer Pole miteinbezogen werden“, sagt Co-Autor Prof. Dr. Leonid Dubrovinsky vom Bayerischen Geoinstitut der Universität Bayreuth.

Förderung:

Die Studie erhielt finanzielle Unterstützung durch die Westfälische Wilhelms-Universität Münster (WWU), die Deutsche Forschungsgemeinschaft und das Bundesministerium für Bildung und Forschung.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Carmen Sanchez-Valle
Institut für Mineralogie der Universität Münster
Phone: +49 251 83-33415
sanchezm@uni-muenster.de

Originalpublikation:

I. Kupenko et al. (2019): Magnetism in cold subducing slabs at mantle transition zone depths. Nature; DOI: 10.1038/s41586-019-1254-8

Weitere Informationen:

https://www.nature.com/articles/s41586-019-1254-8 Originalpublikation in "Nature"


https://www.uni-muenster.de/Mineralogie/ Institut für Mineralogie an der WWU

Svenja Ronge | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-muenster.de/

Weitere Berichte zu: Erdinneren Erdkruste Erdmantel Hämatit Magnetfeld Magnetismus Mars Mineralogie Ozean WWU

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Ammoniak aus Landwirtschaft kann Wolken über Asien beeinflussen
09.07.2019 | Karlsruher Institut für Technologie

nachricht Erste globale Analyse von Höhlentropfwasser
09.07.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Was die Kraftwerke der Zelle in Form hält

Ein Team aus Deutschland und der Schweiz um Professor Oliver Daumke vom MDC hat untersucht, wie ein Protein der Dynamin-Familie die innere Membran der Mitochondrien verformt. Die Ergebnisse, die auch Einblicke in erbliche Erkrankungen des Sehnervs liefern, sind im Journal „Nature“ veröffentlicht.

Mitochondrien sind die Kraftwerke unserer Zellen. Hier wird Energie in Form chemischer Verbindungen wie ATP gewonnen. Um dieser Aufgabe optimal nachgehen zu...

Im Focus: Knobeln auf dem Quanten-Schachbrett

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher...

Im Focus: Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

8. Technologieforum Fahrerlose Transportsysteme und mobile Roboter des Fraunhofer IPA

09.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Das Kernkörperchen – bekanntes Organell mit neuen Aufgaben

12.07.2019 | Biowissenschaften Chemie

Defekte in Mikrochips sichtbar machen

12.07.2019 | Energie und Elektrotechnik

Digitaler Zwilling für personalisierte Medizin - Schick den Avatar zum Arzt

12.07.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics