Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kohlenstoff aus dem Erdinneren: eine Quelle für den Kohlenstoffkreislauf der Erde

23.01.2013
Bayreuther Geowissenschaftler veröffentlichen in „Nature“ neue Erkenntnisse zu Oxidationsprozessen im Erdmantel

Der Kohlenstoffkreislauf der Erde ist, vor allem wegen seiner Bedeutung für den Klimawandel, von zentralem Interesse für die umwelt- und geowissenschaftliche Forschung. Auf welchen Wegen und durch welche chemischen Prozesse gelangt Kohlenstoff aus dem Erdinneren an die Erdoberfläche und weiter bis in die Atmosphäre? Diese komplexe Frage ist sowohl unter erdgeschichtlichen Aspekten als auch im Hinblick auf globale Klimaprognosen von wachsendem Interesse.


Prof. Dr. Dan Frost, Dr. Catherine McCammon und der Bayreuther Masterstudent Dickson O. Ojwang im Hochdrucklabor des Bayerischen Geoinstituts (BGI) an der Universität Bayreuth.
Bild: Christian Wißler


Diamanthaltiges Gestein, das im Hochdruck-Laboratorium des Bayerischen Geoinstituts hergestellt wurde. Es hat die gleiche chemische Zusammensetzung wie Diamantgestein in rund 180 Kilometern unter der Erdoberfläche. Die Forschungstechnologien im BGI ermöglichen eine präzise Simulation der Druckverhältnisse und der Temperaturen in verschiedenen Schichten des Erdinneren.
Die hier abgebildete Gesteinsprobe hat einen Durchmesser von 3 mm, das weiß glänzende Gestein in der Mitte ist ein Diamant.
Bild: Dr. Vincenzo Stagno

Bei der Aufklärung der Prozesse, die kohlenstoffhaltige Mineralien im Erdinneren entstehen lassen und zur Freisetzung von Kohlendioxid führen, ist ein Forschungsteam am Bayerischen Geoinstitut – einem Forschungszentrum der Universität Bayreuth – jetzt einen wesentlichen Schritt vorangekommen. In Hochdruck-Experimenten stellte sich heraus, dass derartige Prozesse im Erdmantel von der bisherigen Forschung deutlich unterschätzt worden sind. Im Forschungsmagazin „Nature“ präsentieren die Bayreuther Wissenschaftler um Prof. Dr. Daniel Frost und Dr. Catherine McCammon ihre Ergebnisse.

Redox-Reaktionen im Erdinneren:
Wechselwirkungen von Diamant und Eisen
Die Entstehung kohlenstoffhaltiger Mineralien im Erdinneren beruht auf chemischen Reaktionen, die in der Forschung als „Redox-Reaktionen“ bezeichnet werden. Für diese Reaktionen ist es charakteristisch, dass Elektronen von einem Material auf ein anderes Material übergehen. Chemisch gesprochen, wird das Material, das die Elektronen abgibt, oxidiert; das Material, das sie aufnimmt, wird hingegen reduziert. Redox-Reaktionen sind am Stoffwechsel und an der Photosynthese lebender Organismen ebenso beteiligt wie an oberirdischen Verbrennungs- und Korrosionsprozessen. Aber auch im Erdinneren finden Redox-Reaktionen statt. Hier bewirken sie beispielsweise, dass durch die Oxidation von Diamantgestein kohlenstoffhaltige Mineralien entstehen. Diese Mineralien setzen ihrerseits Kohlendioxid frei, das im Magma gebunden und über vulkanische Prozesse bis zum Meeresboden hinauftransportiert wird. Weil Diamant- und Eisenanteile im Gestein des Erdinneren oftmals räumlich benachbart sind, ist die Oxidation von Diamant in vielen Fällen an die Reduktion von Eisen gekoppelt.
Von der Forschung bisher unterschätzt:
Oxidationsprozesse im Erdmantel
Die Voraussetzungen für Oxidationsprozesse sind im Erdinneren unterschiedlich gut ausgeprägt. Je höher die Sauerstoff-Fugazität – also der effektive Druck des Sauerstoffs – in einer Gesteinsschicht ist, desto intensiver sind die darin ablaufenden Oxidationsprozesse. Den Bayreuther Wissenschaftlern ist es nun gelungen, die Sauerstoff-Fugazität in unterschiedlichen Tiefen des Erdinneren mit einer bisher unerreichten Präzision zu bestimmen.

Diamanthaltiges Gestein, das im Hochdruck-Laboratorium des Bayerischen Geoinstituts hergestellt wurde. Es hat die gleiche chemische Zusammensetzung wie Diamantgestein in rund 180 Kilometern unter der Erdoberfläche. Die Forschungstechnologien im BGI ermöglichen eine präzise Simulation der Druckverhältnisse und der Temperaturen in verschiedenen Schichten des Erdinneren.

Mithilfe der Hochdruckpressen im Bayerischen Geoinstitut wurden Gesteinsproben extrem hohen Drücken ausgesetzt, wie sie in verschiedenen Tiefen des Erdinneren herrschen. Das Ergebnis: Im oberen Erdmantel, insbesondere in einer Tiefe von rund 150 Kilometern, sind die Voraussetzungen für Oxidationsprozesse erheblich günstiger als bisher angenommen.

„Unsere Experimente führen deshalb zu der Schlussfolgerung: In einem viel größeren Umfang, als dies bisher für möglich gehalten wurde, haben sich karbonhaltige Mineralien im oberen Erdmantel dadurch herausgebildet, dass Gestein aus tieferen Erdschichten aufwärts gelangt und oxidiert ist,“ erklärt Dr. Catherine McCammon. Und ihr Kollege Prof. Dr. Daniel Frost ergänzt: „Oxidationsprozesse in einer Tiefe zwischen 120 und 150 km führen dazu, dass Diamanten und Graphit in Kohlendioxid umgewandelt werden. Dies verursacht Schmelzprozesse und in deren Folge eine Freisetzung von Kohlendioxid aus dem Erdinneren. Wir haben es hier mit einer Kohlendioxid-Quelle zu tun, die am Kohlenstoffkreislauf der Erde wesentlich beteiligt ist.“ Für Forschungsarbeiten zu extrem hohen Drücken im Erdinneren ist Daniel Frost im Jahre 2008 mit einem European Advanced Grant, dem höchsten Forschungspreis der Europäischen Union, ausgezeichnet worden.

Das Bayerische Geoinstitut an der Universität Bayreuth –
ein Zentrum für erfolgreiche Nachwuchswissenschaftler
Die Publikation, die das Bayreuther Forschungsteam in „Nature“ vorgelegt hat, zeigt beispielhaft, wie aus den Forschungsarbeiten am BGI international erfolgreiche Nachwuchswissenschaftler hervorgehen. Dr. Vincenzo Stagno, Erstautor der Veröffentlichung, hat einige der darin beschriebenen Hochdruck-Experimente im Rahmen seiner Dissertation durchgeführt und arbeitet seit kurzem am Geophysical Laboratory der Carnegie Institution of Washington. Dickson O. Ojwang beendet derzeit den Master-Studiengang „Experimental Geosciences“ an der Universität Bayreuth und wird demnächst eine Stelle als wissenschaftlicher Mitarbeiter an der Universität Stockholm antreten.
Veröffentlichung:
The oxidation state of the mantle and the extraction of carbon from Earth’s interior,
in: Nature 493, 84–88 (03 January 2013)
DOI: 10.1038/nature11679
Ansprechpartner:
Prof. Dr. Daniel Frost
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55 3737
Dan.Frost@uni-bayreuth.de
Dr. Catherine McCammon
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0) 921 55 3709 / 3753
Catherine.McCammon@uni-bayreuth.de
Text und Redaktion:
Christian Wißler M.A.
Stabsstelle Presse, Marketing und Kommunikation Universität Bayreuth
D-95440 Bayreuth
Tel.: 0921 / 55-5356 / Fax: 0921 / 55-5325
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Massiver Meteoriten-Einschlagskrater entdeckt
15.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Einzigartiger Wissensschatz an der BfG: 30 Jahre Weltdatenzentrum Abfluss
14.11.2018 | Bundesanstalt für Gewässerkunde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics