Klimawandel: Wie speichern Böden CO2?

Verteilung der organischen Substanz im Boden: Kohlenstoff reichert sich bevorzugt an bestimmten rauen Mineraloberflächen an, so genannten Hot Spots (gelbe Färbung).<br><br>C. Vogel/TUM<br>

Einen Teil des CO2 nehmen Ozeane, Pflanzen und die Böden auf. Sie bilden damit ein wichtiges Reservoir für Kohlenstoff, das die Freisetzung von CO2 eindämmt. Wissenschaftler haben jetzt festgestellt, wie organischer Kohlenstoff im Boden fixiert wird.

Ihr Ergebnis: Der Kohlenstoff bindet nur an bestimmte Bodenstrukturen. Die Kapazität des Bodens CO2 aufzunehmen muss daher neu bewertet und in aktuelle Klimamodelle eingerechnet werden.

Aus früheren Studien ist bekannt, dass Kohlenstoff an sehr kleine mineralische Teilchen bindet. In der jetzt vorgestellten Studie in Nature Communications zeigen die Forscherinnen und Forscher, dass neben der Größe auch die Oberfläche der Minerale eine Rolle spielt. „Der Kohlenstoff bindet an Minerale, die wenige Tausendstel Millimeter groß sind – und lagert sich dort fast ausschließlich an raue und kantige Flächen an“, erklärt Prof. Ingrid Kögel-Knabner, Leiterin des Lehrstuhls für Bodenkunde an der TUM.

Mikroorganismen helfen beim Einbau von Kohlenstoff

Vermutlich sind die rauen Mineraloberflächen ein bevorzugter Lebensraum für Mikroben. Diese wandeln den Kohlenstoff um und sind daran beteiligt, dass er an Minerale gebunden wird. „Wir haben im Boden regelrechte Hot Spots mit hohem Kohlenstoff-Anteil gefunden“, sagt Cordula Vogel, die Erstautorin der Studie. „Außerdem bindet neuer Kohlenstoff an Stellen, an denen bereits ein hoher Kohlenstoffanteil vorliegt.“

Diese Hot-Spots der Kohlenstoffanreicherung sind allerdings auf nur etwa 20 Prozent Mineraloberflächen zu finden. Bisher war man davon ausgegangen, dass Kohlenstoff gleichmäßig im Boden verteilt ist. „Mit den Ergebnissen unserer Untersuchungen lassen sich nun gezielt die Böden identifizieren, die CO2 besonders gut speichern können“, erläutert Kögel-Knabner. „Diese Erkenntnisse müssen in Modellen zum Kohlenstoff-Kreislauf berücksichtigt werden.“

Massenspektrometer macht Moleküle sichtbar

Als Probenmaterial verwendete das Team sogenannten Lössboden, einen fruchtbaren Ackerboden, der weltweit vorkommt – und somit auch als Kohlenstoff-Speicher von großer Bedeutung ist. Ihre Messungen führten die Forscher mit einem äußerst präzisen Nachweisverfahren durch: Mit der NanoSIMS-Massenspektrometrie (http://www.soil-science.com/index.php?id=nano_about) lassen sich kleinste Bodenstrukturen darstellen und vergleichen.

*Quelle: http://www.globalcarbonatlas.org/?q=emissions

Publikation:
Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils, Cordula Vogel, Carsten W. Müller, Carmen Höschen, Franz Buegger, Katja Heister, Stefanie Schulz, Michael Schloter & Ingrid Kögel-Knabner, Nature Communications, DOI: http://www.nature.com/ncomms/2014/140107/ncomms3947/full/ncomms3947.html.
Kontakt:
Prof. Dr. Ingrid Kögel-Knabner
Technische Universität München
Lehrstuhl für Bodenkunde
Tel: +49 8161 71-3677
koegel@wzw.tum.de

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ultraleichte selbstglättende Spiegel

…erhöhen die Effizient hochmoderner Teleskope. Schon immer faszinierte den Menschen der Blick in den Sternenhimmmel und nicht minder faszinierend ist es, die Erde aus dem Weltraum zu betrachten. Möglich ist…

Überraschende Umkehr in Quantensystemen

Forschende haben topologisches Pumpen in einem künstlichen Festkörper aus kalten Atomen untersucht. Die Atome wurden mit Laserstrahlen gefangen. Überraschenderweise kam es zu einer plötzlichen Umkehr der Atome an einer Wand…

Magnetisch durch eine Prise Wasserstoff

Neue Idee, um die Eigenschaften ultradünner Materialien zu verbessern. Magnetische zweidimensionale Schichten, die aus einer oder wenigen Atomlagen bestehen, sind erst seit kurzem bekannt und versprechen interessante Anwendungen, zum Beispiel…

Partner & Förderer