Klimageschichte im Spiegel der Tiefsee

Bohrkern an Deck des Bohrschiffs JOIDES Resolution&quot;<br>IODP<br>

Anhand von Bohrkernen aus dem äquatorialen Pazifik zeig Prof. Heiko Pälike vom MARUM und ein internationales Forscherteam, wie geochemische Prozesse im Ozean das Auf und Ab des globalen Klimas während der letzten rund 55 Millionen Jahre widerspiegeln und beeinflussen. Mit bisher unerreichter Genauigkeit belegen die Forscher: Parallel zur globalen Abkühlung fiel die Meerestiefe, unterhalb der das Kohlenstoffmineral Kalkspat vollständig aufgelöst wird, von einst 3.300 auf heute 4.500 Meter.

Der Pazifik ist der größte aller Ozeane auf unserem blauen Planeten. Er bedeckt ein Drittel der Erdoberfläche und ist durchschnittlich rund 4.200 Meter tief. Für den Kohlenstoffkreislauf und damit für das langfristige Klimageschehen spielt insbesondere die biologisch sehr produktive Region beiderseits des Äquators eine wichtige Rolle. 2009 war sie deshalb das Ziel einer viermonatigen Expedition des US-amerikanischen Bohrschiffs JOIDES Resolution. Die Forschungsfahrt fand im Rahmen des Integrierten Ozeanbohr-Programms (IODP) statt. In Wassertiefen von 4.300 bis 5.100 Meter erbohrte die Expeditionsteams aus mehr als 100 Wissenschaftlern und Technikern an acht Lokationen Meeresablagerungen von insgesamt 6.3 Kilometer Länge. Damit steht ein Klimaarchiv zur Verfügung, das die letzten 55 Millionen Jahre umspannt.

„Wir reden heute viel über vom Menschen produziertes Kohlenstoffdioxid und die dadurch ausgelöste Klimaerwärmung“, sagt Prof. Heiko Pälike, einer der Expeditionsleiter. „Langfristig, d.h. über Jahrmillionen gesehen, bestimmen andere Prozesse den Kohlenstoffkreislauf.“ Zum Beispiel Vulkaneruptionen, die große Mengen Kohlendioxid in die Atmosphäre pusten. Andererseits sorgt die Verwitterung kalkhaltiger Gesteine dafür, dass Kohlendioxid wieder gebunden und dem Klimakreislauf entzogen wird. „Soll und Haben des Kohlenstoffkreislaufs spiegeln sich im Ozean in der sogenannten Karbonat-Kompensationstiefe“, betont der MARUM-Wissenschaftler. Damit bezeichnen die Forscher jene Meerestiefe, unterhalb der sich Kalzit, das man auch als Kalkspat bezeichnet, vollständig aufgelöst. Kalzit ist ein Kohlenstoffmineral, das zu den Karbonaten zählt. Unterhalb der Karbonat-Kompensationstiefe bleiben keine kalkhaltigen Partikel – zum Beispiel Kalkschalenreste von Meeresorganismen – erhalten. Deshalb bestimmen in der Tiefsee kalkfreie Ablagerungen wie etwa Tone die Zusammensetzung der Sedimente.

In ihrer Studie zeigen die Nature-Autoren, wie die Karbonat-Grenzlinie im Lauf der Klimageschichte schwankt. Generelle gilt: Je wärmer es auf der Erde ist, desto flacher verläuft sie. Herrschen Eiszeitbedingungen, sinkt die Grenzlinie normalerweise in größere Tiefen ab.

Im äquatorialen Pazifik, das belegen Pälike und Kolleginnen an Hand der erbohrten Ablagerungen, lag die Grenzlinie vor rund 55 Millionen Jahren in 3.300 bis 3.600 Meter Tiefe. Zwischen 52 und 47 Millionen Jahre vor heute, als es auf unserem Planeten besonders warm war, flachte sie sogar bis auf 3.000 Meter Meerestiefe ab. Als die Erde vor 34 Millionen Jahren allmählich auskühlte und sich in der Antarktis erste Eisschilde bildeten, ging es auch mit der Karbonat-Tiefenlinie bergab: auf bis zu 4.800 Meter vor 10,5 Millionen Jahren.

Die Tiefseeablagerungen belegen eindrucksvoll, dass Klima und Kohlenstoffkreislauf nie eine Einbahnstraße waren: „In den Ablagerungen aus der Zeit, die der großen antarktischen Vereisung vor 34 Millionen Jahren voranging, haben wir fünf Ereignisse beschrieben, in denen sich die Karbonat-Kompensationstiefe zwischen 200 und 900 Metern nach oben und unten bewegte“, sagt Geoforscher Heiko Pälike: „Diese Ereignisse, die oft für Erwärmungs- und Abkühlungsphasen stehen, dauerten zwischen 250.000 und einer Million Jahre.“ Aber auch für die jüngere Vergangenheit sind vergleichbare Episoden belegt. So vor rund 18,5 Millionen Jahren, als besagte Tiefenlinie um rund 600 Meter Richtung Meeresoberfläche anstieg – um zweieinhalb Millionen Jahre später wieder auf 4.700 Meter abzusinken. Heute lieg sie im Pazifik bei etwa 4.500 Meter.

Weitere Informationen / Interviewanfragen / Fotos / Videos:
Albert Gerdes
MARUM – Zentrum für Marine Umweltwissenschaften
Universität Bremen
Tel.: 0421 218 65540
Email: agerdes@marum.de

MARUM entschlüsselt mit modernsten Methoden und eingebunden in internationale Projekte die Rolle des Ozeans im System Erde – insbesondere im Hinblick auf den globalen Wandel. Es erfasst die Wechselwirkungen zwischen geologischen und biologischen Prozessen im Meer und liefert Beiträge für eine nachhaltige Nutzung der Ozeane.

Das MARUM umfasst das DFG-Forschungszentrum und den Exzellenzcluster „Der Ozean im System Erde“.

Media Contact

Albert Gerdes idw

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer