Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche

21.03.2017

Internationale Meeres- und Klimaforscher kommen am 27. März zu einem bisher einzigartigen Experiment am Institut für Chemie und Biologie des Meeres (ICBM) der Universität Oldenburg zusammen. Zwei Wochen lang wird das interdisziplinäre Expertenteam vom Wilhelmshavener ICBM Standort aus auf dem Jadebusen die hauchdünne Oberflächenschicht des Meeres auch in der Nacht untersuchen. Sie beeinflusst den Gasaustausch zwischen Atmosphäre und Ozean und wirkt sich auch auf das Klimageschehen aus.

Der größte Teil der Ozeane ist von dünnen natürlichen Häutchen, sogenannten Oberflächenfilmen, bedeckt. Angereichert mit organischen Verbindungen biologischen Ursprungs bilden sie eine turbulenzfreie Grenzschicht auf der Meeresoberfläche. Diese Schicht verlangsamt den Gasaustausch zwischen Ozean und Atmosphäre.


Dem Projektteam steht der Forschungskutter „Senckenberg“ des Wilhelmshavener Senckenberg Instituts zur Verfügung

Foto: Dr. Oliver Wurl/ ICBM


Zum Einsatz kommen eine sensorbestückte Spezial-Driftboje und ein ferngesteuerter Forschungskatamaran

Foto: Dr. Oliver Wurl/ ICBM

Und oft bietet sie ideale Lebensbedingungen für Mikroorganismen, die diesen Austausch zusätzlich aktiv beeinflussen können. Die Wissenschaftler des Projektteams vermuten, dass sich dieser Film bei Dunkelheit anders verhält als am Tag: Die Sonneneinstrahlung lässt zum Beispiel Mikroalgen Sauerstoff (O2) produzieren – die Ozeane steuern immerhin die Hälfte des Luftsauerstoffs auf der Erde bei.

Darüber hinaus nehmen die Meere ungefähr ein Drittel des von Menschen produzierten Treibhausgases Kohlendioxid (CO2) auf. Speziell nachts, so die Annahme, könnten allerdings atmende Mikroorganismen in der Grenzschicht in den Vordergrund treten, die ebenfalls CO2 produzieren.

In den kommenden zwei Wochen am Jadebusen geht es vor allem um folgende Fragen: Schwanken die Zusammensetzung und die Stoffwechselleistungen der Mikroben-Gemeinschaften im Tagesverlauf nennenswert? Und beeinflussen Sie tatsächlich in maßgeblicher Form den Gasaustausch von O2 und CO2 durch den Oberflächenfilm?

Außerdem interessiert die Wissenschaftler, inwieweit biologische, physikalische und (photo-) chemische Prozesse die Menge und Beschaffenheit feinster Schwebstoffe (Aerosole) über der Meeresoberfläche prägen – diese wirken sich auch auf die Wolkenbildung aus.

„Es ist das erste Mal, dass wir Oberflächenfilme auch nachts untersuchen, überdies international und fachübergreifend. Das wird eine Herausforderung, denn die Arbeit bei Dunkelheit auf See ist ohnehin nicht einfach“, erklärt Dr. Mariana Ribas Ribas, Ozeanographin in der Arbeitsgruppe (AG) Meeresoberflächen am ICBM. Gemeinsam mit ihrem Kollegen Dr. Christian Stolle, der zudem am Institut für Ostseeforschung (IOW) forscht, hat sie das Projekt initiiert.

Die Idee für „MILAN“ (sea-surface microlayer functioning during the night) ist auf unkonventionelle Weise am Rande einer Fachtagung entstanden. „Normalerweise wirbt man Geld ein und führt dann ein Projekt durch. Hier lief es anders herum“, so Ribas Ribas weiter. Gemeinsam wolle man MILAN nun zu einem europäischen Projekt ausbauen.

Zum Team gehören Forscher aus Costa Rica, Dänemark, Großbritannien, Italien, Kroatien, Polen, Schweden und Spanien. Von deutscher Seite sind neben den Projektinitiatoren Ribas Ribas und Stolle sowie dem Leiter der durch den European Research Council (ERC Starting Grants) geförderten AG Meeresoberflächen, Dr. Oliver Wurl, weitere Wissenschaftler der Universität Oldenburg, des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel, des Bremer Leibniz-Zentrums für Marine Tropenforschung (ZMT) und des Leibniz-Instituts für Troposphärenforschung (TROPOS) in Leipzig beteiligt.

Dem Projektteam steht der Forschungskutter „Senckenberg“ des Wilhelmshavener Senckenberg Instituts zur Verfügung. Von Bord des Schiffes aus soll neben einer sensorbestückten Spezial-Driftboje auch ein ferngesteuerter Forschungskatamaran der ICBM AG Meeresoberflächen zum Einsatz kommen: Er sammelt größere Mengen des Oberflächenfilms für Laboruntersuchungen ein. Zweckgebundene universitäre Mittel in begrenztem Umfang erlauben zudem den Einsatz des ICBM-Forschungsbootes „Otzum“.

MILAN beginnt am 27. März und endet vorerst am 13. April. Interessierte können dem Projekt über soziale Medien folgen: Es wird ein Blog unter http://icbm-auf-see.uni-oldenburg.de/category/home/fs-senckenberg/ eingerichtet, und Dr. Mariana Ribas Ribas wird nach Projektbeginn via Twitter unter dem Hashtag #MILANProject informieren.

Hinweis für Kolleginnen und Kollegen der Presse:
Kurzfristige Ausfahrten der Forschungsfahrzeuge bieten Gelegenheit zu Reportagen von See. Sollten Sie Interesse haben, von einer der Fahrten zu berichten, wenden Sie sich bitte an Dr. Sibet Riexinger (sibet.riexinger@uol.de, Telefon 0441/798-8113).

Weitere Informationen:

http://www.icbm.de/

Dr. Corinna Dahm-Brey | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg
17.02.2020 | Westfälische Wilhelms-Universität Münster

nachricht Der Antarktis-Faktor: Modellvergleich offenbart zukünftiges Meeresspiegelrisiko
14.02.2020 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics