Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017

Auf Bali herrscht seit Ende November höchste Alarmstufe. Der Vulkan Gunung Agung stößt Wolken aus Asche und Schwefeldampf in die Atmosphäre. ForscherInnen des Wegener Center der Universität Graz stellen nun erstmals eine Methode vor, mit der sich die dreidimensionale Ausformung vulkanischer Wolken präzise erfassen lässt. Assoz. Prof. Dr. Andrea Steiner und Univ.-Prof. Dr. Gottfried Kirchengast haben in einem internationalen Team gezeigt, dass Temperaturprofile der Atmosphäre, die mit der satellitengestützten Radio-Okkultation gewonnen werden, einen „Fingerabdruck“ vulkanischer Wolken liefern. Ihre Forschungsergebnisse sind kürzlich im Fachjournal „Advances in Space Research“ erschienen.

Auf gewöhnlichen Satellitenbildern lässt sich die zweidimensionale Ausdehnung von Wolken erkennen, aber nicht, wie sie sich in Bezug auf ihre Höhe ausformen. Diese Information ist allerdings, insbesondere bei vulkanischen Wolken, von großer Bedeutung, sowohl für den Flugverkehr als auch für die Klimaforschung. Die Grazer ForscherInnen konnten mit KollegInnen aus Italien, Belgien und den USA diese Lücke jetzt schließen.


Ausbruch des Nabro in Eritrea im Juni 2011: Der Vergleich der gemittelten Temperaturanomalien im Monat davor (grün) und im Monat danach (rot) zeigt die Erwärmung in 17 bis 20 km Höhe in der Region.

Bildquelle: Biondi et al. 2017

http://www.uni-graz.at

„Wir haben zum ersten Mal gezeigt, dass sich aus Radio-Okkultations-Daten, die Temperaturanomalien in der Atmosphäre sichtbar machen, die Höhe und die thermische Wirkung der vulkanischen Wolken ermitteln lassen“, fasst Andrea Steiner zusammen.

Vulkanische Wolken bestehen aus Ruß- und Asche-Schwebeteilchen oder aus Wassertröpfchen, die Schwefelsäure enthalten. Sie können bis zur oberen Grenze der Wetterschicht in rund 15 Kilometer Höhe und auch darüber hinaus reichen.

„Dort, wo sie auftreten, führen sie zu einer Erwärmung der Atmosphäre, weil die Schwebeteilchen die Sonnenstrahlen stärker absorbieren. In Bodennähe überwiegt jedoch die abkühlende Wirkung der Vulkanaerosole, und die globale Lufttemperatur sinkt“, weiß Andrea Steiner. Diese Temperaturanomalien machen Daten der Radio-Okkultation sichtbar.

Die Messmethode basiert auf Signalen von GPS-Satelliten, die sich zu mehreren Empfänger-Satelliten hin ausbreiten. Auf ihrem Weg durch die Atmosphäre werden die Signale durch Änderungen der Luftdichte gebrochen. Aus der Stärke der Ablenkung lassen sich Informationen über Druck, Temperatur und Luftfeuchte ableiten.

Von der Möglichkeit, vulkanische Wolken dreidimensional zu erfassen, profitiert nicht nur die Luftfahrt. Sie hilft auch, das Monitoring von Klimaänderungen und Klimasimulationen zu verbessern: „Wenn wir die Temperaturwirkung vulkanischer Wolken in der Atmosphäre besser verstehen und ihre zeitliche Entwicklung und Ausformung genauer beobachten, können wir auch natürliche Klimaschwankungen gemeinsam mit menschgemachten Klimatrends zuverlässiger beschreiben“, unterstreicht Gottfried Kirchengast die globale Bedeutung der neuen Erkenntnisse.

Diese fanden kürzlich international besondere Beachtung und Auszeichnung: Das internationale Online-Fachmagazin „Advances in Engineering“ hat den Artikel wegen seines Pioniercharakters als Highlight aufgenommen: http://advanceseng.com/general-engineering/detection-monitoring-volcanic-clouds-....

Die Arbeit ist in den Forschungsschwerpunkt Umwelt und Globaler Wandel der Universität Graz eingebettet und trägt zum Forschungsfokus „Globales Klimamonitoring, Klimadiagnose und Klimaprozesse“ des Wegener Center bei. Dieser wird durch Mittel der Forschungsförderungsgesellschaft FFG (Weltraumforschungsprogramm ASAP), des Wissenschaftsfonds FWF und durch europäische Mittel der Weltraumorganisationen ESA und EUMETSAT sowie der EU unterstützt.

Publikation:
Riccardo Biondi, Andrea Steiner, Gottfried Kirchengast, Hugues Brenot, Therese Rieckh:
Supporting the detection and monitoring of volcanic clouds: A promising new application of Global Navigation Satellite System radio occultation,
Advances in Space Research, 60, 2707-2722, 2017
http://doi.org/10.1016/j.asr.2017.06.039

Kontakt:
Assoz. Prof. Dr. Andrea Steiner
Wegener Center für Klima und Globalen Wandel
Karl-Franzens-Universität Graz
Tel.: 0043 (0)316/380-8432
E-Mail: andi.steiner@uni-graz.at

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Weitere Informationen:
http://www.uni-graz.at

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Biber verändern das Gesicht der Arktis
16.07.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Drohnen zählen Tiere in Afrika
11.07.2018 | Schweizerischer Nationalfonds SNF

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Europaweit erste Patientin mit neuem Hybridgerät zur Strahlentherapie behandelt

19.07.2018 | Medizintechnik

Waldrand oder mittendrin: Das Erbgut von Mausmakis unterscheidet sich je nach Lebensraum

19.07.2018 | Biowissenschaften Chemie

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics