Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Extremer Frontalaufprall auf der Erde

09.02.2016

Neue, in „Science“ veröffentlichte Isotopenanalysen sprechen für die These, dass vor rund 4,5 Milliarden Jahren ein planetenartiger Himmelskörper tief in die Erde eingedrungen und eine Materialmischung erzeugt hat, aus der auch der Mond entstanden ist.

Wie ist der Mond entstanden? Die Fachwelt ist sich weitgehend darin einig, dass vor rund 4,5 Milliarden Jahren ein planetenartiger Himmelskörper auf die Erde geprallt ist, die zu diesem Zeitpunkt bereits einen festen Gesteinsmantel hatte.


Künstlerische Darstellung des Aufpralls von Theia auf der Erde.

© Abbildung mit freundlicher Genehmigung des NASA/Jet Propulsion Laboratory am California Institute of Technology.

Dabei wurden riesige Wolken von Staub und Gesteinsbrocken in die Erdumlaufbahn geschleudert, aus denen sich allmählich der Mond herausbildete. Bisher war in der Forschung die Annahme verbreitet, jener Himmelskörper – der nach einer Gestalt aus der griechischen Mythologie den Namen „Theia“ erhielt – sei von der Seite her in einem eher flachen Winkel auf der Erdoberfläche aufgeschlagen.

Diese Hypothese ist jedoch unplausibel, wie ein internationales Forschungsteam mit Prof. Dr. David Rubie vom Bayerischen Geoinstitut (BGI) der Universität Bayreuth jetzt herausgefunden hat. Die im Wissenschaftsmagazin „Science“ veröffentlichten Forschungsergebnisse sprechen vielmehr dafür, dass Theia mit extrem hoher Geschwindigkeit frontal auf die Erde zugestürzt ist, vermutlich mit rund 10 Kilometern pro Sekunde.

Die enorme Wucht des Aufpralls setzte Energien frei, die einen großen Teil des Erdgesteins aufgeschmolzen haben. Dadurch ist Theia tief in die Erde eingedrungen und hat sich mit dem Gestein der Erde vermischt – mit dem Effekt, dass es sich bei dem in die Erdumlaufbahn herausgeschleuderten Material ebenfalls um eine solche Mischung handelte.

Sauerstoff-Isotope im Gestein der Erde und des Mondes

Die Wissenschaftler sind zu diesem Ergebnis gekommen, indem sie Gesteinsproben unterschiedlicher Herkunft miteinander verglichen haben: einerseits Gestein aus Hawaii und Arizona, das infolge vulkanischer Prozesse aus dem Erdmantel an die Erdoberfläche gelangt ist, andererseits Mondgestein, das die Astronauten der Apollo-Missionen 12, 15 und 17 mitgebracht hatten.

Entscheidend war dabei die Analyse des Sauerstoffs, der rund 90 Prozent des Volumens dieser Gesteinsbrocken ausmacht. Der Sauerstoff im Erdgestein enthält fast nur O-16-Isotope, nämlich Sauerstoffatome, deren Kerne jeweils aus acht Protonen und acht Neutronen bestehen. In nur sehr geringen Mengen kommen auch die schwereren Isotope O-17 und O-18 vor, deren Kerne ein bzw. zwei weitere Neutronen enthalten. Die gleichen Mengenverhältnisse finden sich in allen Proben des Mondgesteins.

„Wir haben hinsichtlich der Sauerstoff-Isotope keine signifikanten Unterschiede zwischen dem irdischen Gestein und dem Mondgestein feststellen können“, erklärt Prof. Rubie, der die an der Gesteinsbildung beteiligten Sauerstoff-Isotope modelliert hat. Auch der BGI-Mitarbeiter Dr. Seth Jacobson, der zurzeit an der Universität Nizza tätig ist, hat an diesen Forschungsarbeiten teilgenommen.

Eine Materialmischung aus Theia und ‚Ur-Erde‘:
Ressource für die Entstehung von Erde und Mond

Die gleichen Anteile von Sauerstoff-Isotopen im Gestein von Erde und Mond sind umso auffälliger, als die Erde, der Mars und andere Planeten des Sonnensystems sich in dieser Hinsicht signifikant unterscheiden. Auch Theia als extraterrestrischer Himmelskörper dürfte sich in diesem Punkt deutlich von der ‚Ur-Erde‘ unterscheiden haben.

„Die Ergebnisse unserer Gesteinsanalysen sprechen deshalb eindeutig dafür, dass die Erde in ihrer heutigen Gestalt und der Mond aus einer Materialmischung hervorgegangen sind, die ihren Ursprung in einer wechselseitigen Durchdringung von Theia und ‚Ur-Erde‘ hat“, meint der Bayreuther Geowissenschaftler. „Die nach dem Aufprall in die Erdumlaufbahn geschleuderten Staub- und Gesteinsmengen, aus denen der Mond entstanden ist, enthielten einen ungefähr gleich hohen Anteil von Theia-Material wie die Materialmischung, die sich nach dem Aufprall zum heutigen Planeten Erde verfestigt hat.“

Dieser Befund – so die Autoren der neuen „Science“-Veröffentlichung – spricht eindeutig für einen äußerst heftigen und zerstörerischen Frontalaufprall von Theia. Wäre dieser extraterrestrische Körper seitlich in einem relativ flachen Winkel aufgeschlagen, wäre das Material von Theia größtenteils in der Erdumlaufbahn gelandet. Das heutige Mondgestein würde dann sehr wahrscheinlich andere Anteile von Sauerstoff-Isotopen aufweisen als das Gestein der Erde.

Forschungsförderung durch EU und NASA

Die Bayreuther Forschungsarbeiten von Prof. Rubie wurden aus dem EU-Forschungsprojekt ACCRETE gefördert, für die er 2011 einen ERC Advanced Grant – den höchsten Preis des Europäischen Wissenschaftsrats – erhalten hatte. Dem Autorenteam der in „Science“ veröffentlichten Studie gehören zudem Wissenschaftler der Universität Nizza und der University of California, Los Angeles (UCLA) an. Deren Forschungsarbeiten wurden von der U.S.-amerikanischen Weltraumbehörde NASA unterstützt.

Veröffentlichung:

Edward D. Young et al.,
Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact,
Science 29 Jan 2016: Vol. 351, Issue 6272, pp. 493-496.
DOI: 10.1126/science.aad0525

Kontakt:

Prof. Dr. David Rubie
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-3711
E-Mail: dave.rubie@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Gebirge in Bewegung
14.08.2018 | Technische Universität München

nachricht Künstliche Gletscher als Antwort auf den Klimawandel?
09.08.2018 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics