Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erdbeben in Japan lässt KIT-Messgeräte ausschlagen

11.03.2011
Am 11 März um 6:46 Uhr deutscher Zeit, 14:46 Uhr Ortszeit, ereignete sich 100 Kilometer vor der japanischen Hauptinsel Honshu ein schweres Erdbeben, das nach derzeitigem Stand die Stärke 8,9 hatte.

Damit ist es das stärkste in der Geschichte Japans und das sechststärkste jemals gemessene Beben. Dabei hat sich auch in Karlsruhe der Boden vorübergehend um einen knappen Zentimeter verschoben – das zeigen aktuelle Messdaten des Geophysikalischen Instituts am KIT.


Bodenbewegungen in Karlsruhe – nach dem Beben in Japan. Abb. Geophysikalisches Institut

Der Forschungsbereich Seismologie untersucht die Tiefenstruktur des Mittleren Oberrheingrabens (Projekt TIMO) – die Messstationen sind etwa 10.000 Kilometer vom Epizentrum des Bebens in Japan entfernt. Die schnellste seismische Welle sei nach zwölf Minuten und 28 Sekunden in Karlsruhe eingetroffen, so Dr. Jörn Groos vom Geophysikalischen Institut. Die zweitschnellste folgte nach knapp 23 Minuten. „Bei den ersten beiden Erdbebenwellen handelt es sich um Raumwellen, die sich durch das Erdinnere ausbreiten.“

Danach trafen nach 35 Minuten sowie nach knapp 40 Minuten die langsameren Oberflächenwellen ein, die jedoch die stärkste Bodenverschiebung im Mittleren Oberrheingraben hervorgerufen haben. „Die gesamte Stadt Karlsruhe wurde dabei innerhalb von etwa 100 Sekunden um je neun Millimeter abgesenkt und angehoben sowie um neun Millimeter in Nord-Süd-Richtung und fünf Millimeter in Ost-West-Richtung vorübergehend verschoben.“

Erdbebenforscher unterscheiden verschiedene Wellentypen. Die erste oder Primärwelle (P-Welle) ist eine Druckwelle, die – wie beispielsweise auch der Schall – in Ausbreitungsrichtung schwingt. Die zweitschnellste Welle (Sekundärwelle, S-Welle) schwingt als Scherwelle quer zur Ausbreitungsrichtung. Die Bodenbewegung erfolgt auch aufgrund der Oberflächenwellen: in horizontaler Richtung durch Love-Wellen (benannt nach dem britischen Mathematiker A. E. H. Love), Rayleigh-Wellen (benannt nach dem englischen Physiker Lord Rayleigh) rufen sowohl horizontale als auch vertikale Bewegungen hervor.

Das Projekt TIMO misst und untersucht die globale und regionale Seismizität im Mittleren Oberrheingraben. Das Ziel ist die Charakterisierung der Erdbebentätigkeit im Oberrheingraben sowie der tiefen Struktur der Erdkruste und des Erdmantels.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts und staatliche Einrichtung des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Weiterer Kontakt:
Margarete Lehné
Presse, Kommunikation und Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-45681
margarete.lehneWoe3∂kit.edu

Katrin Hecker | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Beitrag der Küsten zum Klimawandel womöglich unterschätzt
11.11.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Turbulenz sorgt für Eis in Wolken
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics