Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Edelgas mit Seltenheitswert: Bayreuther Geowissenschaftler finden neue Erklärung für Xenonmangel

19.10.2012
In der Online-Ausgabe des Forschungsjournals "Nature" präsentieren Forscher der Universität Bayreuth eine neue Lösung für ein altes Rätsel der Geowissenschaften.

Weshalb kommen die Edelgase Argon und Xenon auf der Erde in so ungleichen Mengen vor? Während Argon, nach Stickstoff und Sauerstoff, das dritthäufigste Element in der Lufthülle der Erde ist, finden sich darin nur sehr geringe Spuren von Xenon. Dies ist angesichts der auf der Erde gefundenen Chondriten umso rätselhafter.

Diese Meteoriten, die wie die Erde vor rund 4,5 Milliarden Jahren entstanden sind und als steinerne Zeugen aus der Frühzeit des Sonnensystems gelten, weisen einen erheblich höheren Xenongehalt auf. Eine Lösung dieses in der Forschung seit langem diskutierten Rätsels haben jetzt Prof. Dr. Hans Keppler und Dr. Svyatoslav Shcheka am Bayerischen Geoinstitut – einem Forschungszentrum der Universität Bayreuth – entwickelt. Im Forschungsjournal "Nature" stellen sie ihre Ergebnisse vor.

Simulationsexperimente mit Magnesiumsilikat

Ausgangspunkt der Bayreuther Forschungsarbeiten war die Frage, ob Edelgase in größeren Mengen im unteren Erdmantel gebunden sein könnten. Der untere Erdmantel befindet sich in einer Tiefe zwischen 660 und 2.900 km, also direkt oberhalb des Erdkerns. Dieser Bereich besteht vorwiegend aus Magnesiumsilikat-Perowskit, einem Mineral mit ungewöhnlicher Struktur, das mehr als die Hälfte der Erdmasse ausmacht. Normalerweise würde man erwarten, dass Edelgase keine chemischen Bindungen eingehen und daher auch nicht in die Kristallstruktur von Mineralen eingebaut werden. Aufgrund der besonderen Eigenschaften von Magnesiumsilikat-Perowskit vermuteten Shcheka und Keppler jedoch, dass sich dieses Mineral anders verhalten könnte.

Mithilfe der Forschungstechnologien im Bayerischen Geoinstitut konnten Keppler und Shcheka die Druck- und Temperaturverhältnisse des unteren Erdmantels simulieren. In einer Hochleistungspresse – der größten in Europa – haben sie einen Druck von 250.000 Atmosphären und eine Temperatur von weit über 1.600 Grad Celsius erzeugt; dabei wurde Magnesiumsilikat-Perowskit mit verschiedenen Edelgasen in Kontakt gebracht. Zum Vergleich: Würde man den Pariser Eiffelturm auf einer Fingerspitze balancieren, entspräche das einem Druck von 100.000 Atmosphären.

Einlagerung von Edelgasen im Gestein: Viel Argon, wenig Xenon

Viele dieser Experimente endeten in heftigen Explosionen. Eine Handvoll von erfolgreichen Experimenten zeigten jedoch ein sehr überraschendes Ergebnis. Der Magnesiumsilikat-Perowskit hat unter dem extremen Hochdruck keine Schwierigkeiten, Atome des vergleichsweise leichten Edelgases Argon einzulagern. Sobald es aus der Hochleistungspresse 'befreit' wird, macht Argon rund 1 Prozent seines Gewichts aus. Auch Krypton, ein weiteres Edelgas, ist mit einem ungefähr gleichen Anteil darin eingelagert. Ganz anders jedoch verhält es sich mit Xenon: Es ist nur zu 0,03 Prozent in dem unter Hochdruck angereicherten Mineral enthalten.

Die Ursache dafür vermuten die Bayreuther Forscher in der Größe der Atome: Argon-Atome haben eine fast ideale Größe, um Sauerstoff-Fehlstellen im Magnesiumsilikat-Perowskit zu besetzen. Xenon-Atome hingegen sind wahrscheinlich schon zu groß, um sich in die winzigen Freiräume des Minerals hineinpressen zu lassen.

Eine erdgeschichtliche Erklärung für die "Xenon-Lücke"
Diese Forschungsergebnisse bieten nun den Schlüssel, um die rätselhafte "Xenon- Lücke" in der Lufthülle der Erde zu erklären. Keppler und Shcheka knüpfen dabei an Erkenntnisse zur frühesten Erdgeschichte an, die in der Forschung bereits als gesichert gelten: Die noch junge Erde enthielt einen riesigen Magmaozean, in dem durch Kristallisationsprozesse große Mengen an Magnesiumsilikat-Perowskit entstanden. Darin lagerten sich, wie die Simulationsexperimente gezeigt haben, unter extrem hohen Drücken vergleichsweise große Mengen an Argon und Krypton ein. Xenon jedoch musste draußen bleiben.

Der mit Edelgasen angereicherte Magnesiumsilikat-Perowskit bildete, als sich die Erde weiter abkühlte, den Hauptbestandteil des unteren Erdmantels. Zugleich verlor die junge Erde durch massive Meteoreinschläge die atmosphärische Hülle, von der sie zunächst noch umgeben war. Erst im weiteren Verlauf der Erdgeschichte entwickelte sich eine neue Erdatmosphäre. Dabei strömten große Mengen von Gasen aus dem Erdinneren nach oben – darunter auch das Argon, das infolge von Umwälzungsprozessen im Erdmantel an die Oberfläche gelangte. Doch nur geringe Spuren von Xenon konnten in die neue Lufthülle entweichen, denn mehr war im Erdinneren nicht vorhanden. Die Zusammensetzung der heutigen Atemluft enthält also immer noch Spuren der Prozesse, die vor 4,5 Milliarden Jahren abliefen, als die Erde vollständig geschmolzen war.

Ausblick auf die Marsforschung

Die jetzt in "Nature" veröffentlichten Forschungsarbeiten sind auch für die Erforschung des Mars von großer Relevanz. Denn auch die Oberfläche auf dem Nachbarplaneten weist einen eigentümlichen Mangel an Xenon auf. Im Lichte der neuen Erkenntnisse ist diese "Xenon-Lücke" ein Indiz dafür, dass es in der Frühgeschichte des Mars einen ähnlichen Magmaozean und ähnliche Kristallisationsprozesse wie auf der Erde gegeben haben könnte.

Veröffentlichungen:

Svyatoslav S. Shcheka and Hans Keppler,
The origin of the terrestrial noble-gas signature,
Nature (2012), Published online 10 October 2012
DOI: 10.1038/nature11506

Ewen Callaway,
The mysterious case of the missing noble gas
Nature News (2012) 10 October 2012, Corrected: 12 October 2012
DOI: 10.1038/nature.2012.11564
mit einem mit Podcast-Interview mit Prof. Dr. Hans Keppler

Ansprechpartner für weitere Informationen:

Prof. Dr. Hans Keppler
Bayerisches Geoinstitut (BGI) der Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 3744/3752/ 3754
E-Mail: hans.keppler@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Hochwasserrisiko kann deutlich gesenkt werden
18.10.2018 | Jade Hochschule - Wilhelmshaven/Oldenburg/Elsfleth

nachricht Geowissenschaften: Was unter dem Wald schläft
15.10.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics