Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der perfekte Sonnensturm

28.09.2016

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die helfen, eine lang diskutierte Forschungsfrage zu lösen. Jahrzehnte rätselten Wissenschaftlerinnen und Wissenschaftler, auf welche Weise hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden.


Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Näheres zum Bild am Ende der Pressemitteilung.

Abbildung: Martin Rother/GFZ

Als aussichtsreiche Erklärung galt ein Prozess, bei dem elektromagnetische Wellen die Teilchen in die Erdatmosphäre ablenkten. Vor zehn Jahren wurde eine weitere Theorie vorgeschlagen, wonach die Partikel in den interplanetaren Raum verschwanden.

Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam gemeinsam mit Kolleginnen und Kollegen aus Instituten weltweit herausgefunden, dass beide Erklärungen gelten – entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits sagt, dass damit einige grundlegende wissenschaftliche Fragen zu unserer nächsten Umgebung im Weltall gelöst werden.

„Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen“, sagt der Forscher. Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ Die Arbeit erscheint in Nature Communications am Mittwoch, 28. September 2016.

Der Physiker James Van Allen wies vor beinahe sechzig Jahren nach, dass das Weltall radioaktiv ist. Er nutzte dazu Messungen eines Geigerzählers, der auf dem ersten US-amerikanischen Satelliten Explorer 1 angebracht war. Heute wissen wir, dass die Erde von zwei Ringen umgeben ist, die hoch energetische Teilchen aus dem Weltall „einfangen“.

Man spricht auch vom „Van-Allen-Gürtel“. Die Strahlung darin stellt eine extrem harsche Umgebung dar für Satelliten und Menschen dar, die in Raumfahrzeugen die Gürtel durchfliegen. Die Satelliten, auf denen unsere Navigationssysteme beruhen, z.B. die GPS Satelliten, befinden sich mitten im Van-Allen-Gürtel.

Die gefährlichsten Partikel für die Raumfahrt sind so genannte relativistische und ultra-relativistische Elektronen. Die einen fliegen mit mehr als 90 Prozent der Lichtgeschwindigkeit, die anderen sogar mit mehr als 99 Prozent der Lichtgeschwindigkeit. Treffen sie auf elektronische Bauteile, können sie diese empfindlich beeinträchtigen oder sogar zerstören.

Gegen relativistische Teilchen lassen sich Satelliten abschirmen, aber gegen die ultra-relativistischen Teilchen gibt es so gut wie keinen Schutz. Yuri Shprits, der kürzlich im Rahmen der Helmholtz-Rekrutierungsinitiative von der University of California, Los Angeles (UCLA) ans GFZ kam und eine Professur an der Universität Potsdam innehat, sagt: „Umso wichtiger ist es, die Dynamik dieser Partikel zu verstehen.“

Das Problem dabei: Im Gegensatz zu den vergleichsweise trägen Veränderungen der Ozeane und der Atmosphäre auf der Erde kann sich der Strahlungsfluss in der Magnetosphäre innerhalb einer Stunde um den Faktor 1000 verändern. Am dramatischsten sind die „drop-outs“, die während geomagnetischer Stürme oder Sonneneruptionen vorkommen. Schon seit Ende der 1960-er Jahre versucht die Forschung zu ergründen, wohin Elektronen aus dem Van-Allen-Gürtel verschwinden. Das Verständnis dieses Prozesses ist zentral, um die radioaktive Umgebung zu charakterisieren und Veränderungen prognostizieren zu können. Fachleute sprechen von Weltraumwettervorhersage.

Eine der Theorien, die „drop-outs“ erklären, beruhte auf bestimmten elektromagnetischen Wellen (EMIC für Electromagnetic Ion Cyclotron Waves). Diese werden durch eindringende Ionen aus dem Magnetosphäreschweif verursacht, die schwerer und energiereicher als Elektronen sind. EMIC-Wellen können Elektronen in die Erdatmosphäre hinein ablenken und so aus dem Van-Allen-Gürtel entfernen.

Vor zehn Jahren schlug Yuri Shprits gemeinsam mit Kolleginnen und Kollegen einen anderen Mechanismus vor, wonach Elektronen nicht nach „unten“, sondern nach oben abgelenkt werden, also nicht in der Atmosphäre landen, sondern ins Weltall verschwinden. Messungen und Modellierungen schienen diesen Weg zu bestätigen, aber es blieb unklar, was genau bei geomagnetischen Stürmen passiert.

Jetzt scheint die Frage gelöst zu sein, nachdem ein internationales Team um Yuri Shprits Daten aus dem Sonnensturm vom 17. Januar 2013 ausgewertet und darüber hinaus mit Ergebnissen aus seinen Modellrechnungen verglichen hat. „Der Sturm bot ideale Bedingungen“, erläutert Shprits, „weil erstens noch Teilchen aus einem vorhergehenden Sturm nachweisbar waren, zweitens die ultra-relativistischen und die relativistischen Teilchenströme an unterschiedlichen Stellen auftraten und drittens die ultra-relativistischen Teilchen tief in der Magnetosphäre gefangen waren.“

Umfangreiche Messungen einer Satellitenmission, die 2012 von der NASA zur Untersuchung der Strahlungsgürtel gestartet wurde (Van-Allen-Probes), zeigten, dass EMIC-Wellen tatsächlich Teilchen in die Atmosphäre streuten. Allerdings betrifft das ausschließlich die superschnellen ultra-relativistischen Teilchen und nicht wie früher gedacht auch die relativistischen.

Bei den hohen Energien ist die Streuung durch Wellen besonders effektiv. Der andere von Yuri Shprits vorgeschlagene Mechanismus hat dagegen die etwas langsameren Teilchen, die relativistischen Elektronen, in den interplanetaren Raum abgelenkt. Damit sei nicht nur eine alte Forschungsfrage gelöst, sagt Shprits, sondern es böten sich nun bessere Möglichkeiten, Prozesse in unserem Strahlungsgürtel, aber auch um andere Planeten herum bis hin zu Sternen und fernen Galaxien zu verstehen.

„Unsere Ergebnisse werden auch helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“ An der Studie waren auch zwei GFZ-Doktoranden beteiligt.

E r l ä u t e r u n g  z u r  G r a f i k :

Visualisierung der magnetischen Umgebung der Erde mit den magnetischen Feldlinien als eine Art Schutzschild, der vom starken Magnetfeld im Erdkern gebildet wird. Die Grafik zeigt die Magnetosphäre der Erde, die energetische Partikel in den Van-Allen-Strahlungsgürteln einfangen kann. Die Feldlinien sind als blaue Bänder visualisiert. Die aufgeschnittenen farbigen Ringe um die Erde zeigen die Zonen, in denen die energiereichsten Partikel fliegen. Die Visualisierung basiert auf den Ergebnissen des VERB-4D-Modells, das Nikita Aseev von der GFZ-Sektion 2.3 Erdmagnetfeld rechnete, und dem magnetischen Tsyganenko 89-Modell. Alle dargestellten Aspekte des Magnetfelds vom Erdkern bis zum All sind Gegenstand der Forschung in der GFZ-Sektion Erdmagnetfeld. Die Grafik erzeugte Martin Rother von der Sektion 2.3. Abb.: Martin Rother/GFZ

Originalarbeit:
Yuri Shprits et al.:“Wave-Induced Loss of Ultra-Relativistic Electrons in the Van Allen Radiation Belts” (Nature Communications, 10.1038/NCOMMS12883)

Josef Zens | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ
Weitere Informationen:
http://www.gfz-potsdam.de/

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was unter dem Yellowstone-Vulkan passiert
17.10.2019 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics