Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Daten aus der Vergangenheit zeigen, wie eine wärmere Welt künftig aussehen wird

26.06.2018

Daten zu einzelnen Wärmeperioden aus der Vergangenheit liefern Hinweise darauf, wie die Erde künftig aufgrund der globalen Klimaerwärmung aussehen könnte. Eine internationale Gruppe von 59 Forschenden aus 17 Ländern hat nun Daten zu vergangenen Wärmeperioden ausgewertet. Die Ergebnisse zeigen, dass sich Ökosysteme und Klimazonen wegen der Erwärmung verschieben und die polaren Eismassen im Verlauf der nächsten Jahrtausende stark schmelzen werden.

Die Studie ist das Ergebnis eines Workshops in Bern, der von den Universitäten Bern, New South Wales (AU) und Oregon State (USA) durchgeführt wurde. Die darin zusammengetragenen Daten zu vergangenen Klimaerwärmungen zeigen, dass sich sogar bei einer Beschränkung der Klimaerwärmung um 2°C über vorindustriellem Niveau – wie im Pariser Abkommen vereinbart – Klimazonen und Ökosysteme verschieben werden.


Eisbohrkerne enthalten wichtige Klimainformationen, wie etwa die atmosphärische Konzentration des Treibhausgases CO2.

Nerillie Abram


Im Eis eingeschlossene Gasbläschen und Asche lassen lie-fern Angaben über das vergangene Klima und Klimawechsel – etwa zu einem prähistorischen Vulkanausbruch vor 14'000 Jahren.

Pete Bucktrout / British Antarctic Survey

Zudem könnte eine rapide Erwärmung in hohen Breiten zusätzliche Treibhausgase freisetzen, und der Meeresspiegel wird im Verlauf der nächsten Jahrtausende um mehrere Meter ansteigen. All dies deutet laut den Forschenden darauf hin, dass viele aktuelle Klimamodelle, die Veränderungen innerhalb dieses Jahrhunderts voraussagen sollen, die längerfristigen Veränderungen voraussichtlich unterschätzen.

In den letzten 3,5 Millionen Jahren kam es zu mehreren Warmphasen, in denen die Temperaturen um 0,5-2°C höher waren als die sogenannten vorindustriellen Temperaturen des 19. Jahrhunderts. Während diesen Warmphasen erwärmten sich jeweils die hohen nördlichen und südlichen Breiten stärker als die Tropen.

Diese regionalen Unterschiede in der Erwärmung entsprechen den Voraussagen von Klimamodellen im Falle einer globalen Erwärmung um 2°C bis zum Ende des Jahres 2100. Obwohl nicht alle diese Warmphasen durch eine Erhöhung von CO2 verursacht wurden, tragen sie jedoch dazu bei, die regionalen Auswirkungen einer begrenzten Erwärmung, wie sie vom Pariser Abkommen angestrebt wird, abzuschätzen.

Verschiebung von Ökosystemen und Klimazonen

Gemäss den Auswertungen zum vergangenen Klima werden sich Ökosysteme und Klimazonen in Zukunft zu den Polen oder zu grösseren Höhen hin verschieben. Als Reaktion darauf könnten durch das Auftauen von Permafrostböden zusätzliches Kohlendioxid und Methan in die Atmosphäre freigesetzt werden. Die globale Erwärmung würde dadurch noch mehr angetrieben.

Aus den Beobachtungen der Vergangenheit lässt sich jedoch schliessen, dass bei einer Beschränkung der Erwärmung um 2°C – wie in Paris angestrebt – das Risiko einer selbstverstärkenden katastrophalen Treibhausgas-Rückkopplung eher gering ist. Dennoch muss laut den Forschenden die hohe Menge an zusätzlichem Kohlendioxid, das aus den Permafrostböden entweichen wird, in zukünftigen Emissions-Szenarien eingerechnet werden.

«Wenn man die zusätzliche Freisetzung von CO2 einbezieht, haben wir noch weniger Spielraum für Irrtümer oder Verzögerungen bei den weltweiten Bemühungen, die CO2-Emissionen zu senken und das globale Klima in einem vernünftigen Rahmen zu stabilisieren», sagt Hubertus Fischer vom Oeschger-Zentrum der Universität Bern.

Meeresspiegel steigt langfristig um über sechs Meter

Auch eine Klimaerwärmung von 1.5-2°C über vorindustriellem Niveau wird eine deutlich Eisschmelze in Grönland und der Antarktis zur Folge haben. Dadurch wird der Meeresspiegel langfristig um über sechs Meter ansteigen – und über mehrere Jahrtausende lang so hoch bleiben. Laut den Forschenden ist ein rascheres Ansteigen des Meeresspiegels zu erwarten als noch in den letzten Dekaden.

Alan Mix von der Oregon State University sagt: «Wir sehen bereits heute die ersten Auswirkungen dieses Anstiegs. Er wird für Jahrtausende nicht mehr zu stoppen sein – mit Folgen für einen grossen Teil der Weltbevölkerung, der Infrastruktur und der Wirtschaft in Küstennähe.»

Kurzfristige Modellberechnungen unterschätzen längerfristige Veränderungen
Durch den Vergleich von Beobachtungen des vergangenen Klimas mit Simulationen von Computermodellen kommen die Forschenden zum Schluss, dass heutige Klimamodelle die langfristige Erwärmung und deren Verstärkung an den Polen unterschätzen.

«Die Voraussagen von Klimamodellen scheinen für relativ kleine Veränderungen in den nächsten Jahrzehnten zutreffend zu sein», sagt Katrin Meissner von der University of New South Wales. «Wir befürchten aber, dass diese Modelle die Klimaveränderungen unter höheren Treibhausgas-Emissionen unterschätzen – zum Beispiel in ‘business as usual’-Szenarien und insbeondere über längere Zeitskalen hinweg.»

Angesichts dieser Ergebnisse sind die Forschenden der Meinung, dass es umso dringlicher ist, die CO2-Emissionen gemäss dem Pariser Abkommen rasch zu senken – in diesem Jahrhundert und darüber hinaus.

PAGES und «Warmer Worlds»

Die Publikation in Nature Geoscience ist das Ergebnis einer Arbeit der wissenschaftlichen Initiative «Warmer Worlds» innerhalb des internationalen Forschungskonsortiums PAGES (Past Global Changes, http://www.pastglobalchanges.org). Die Gruppe «Warmer Worlds» verwendet paläoklimatische Daten, um eine zukünftige Erwärmung abzuschätzen. Zu diesem Zweck versammelte «Warmer Worlds» rund 50 renommierte internationale Paläoklimaforscherinnen und -forscher für einen Workshop, der im April 2017 in Bern stattfand und von PAGES und dem Oeschger-Zentrum für Klimaforschung der Universität Bern unterstützt wurde. «Warmer Worlds» wird von Hubertus Fischer (University Bern), Katrin Meissner (University of New South Wales, Sydney) und Alan Mix (Oregon State University, Corvallis, OR) koordiniert. PAGES ist ein zentrales Projekt des globalen Nachhaltigkeits-Programms «Future Earth» (http://www.futureearth.org) mit dem Ziel, Forschung zu Klimawechseln in der Vergangenheit zu koordinieren und publik zu machen.
Angaben zur Publikation und zu den Kontaktpersonen sehen Sie auf der nächsten Seite.

Publikation:
Fischer, H., Meissner, K.J., Mix, A.C., et al.: Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 25. Juni 2018. https://doi.org/ 10.1038/s41561-018-0146-0.

Kontaktpersonen:
Prof. Hubertus Fischer Physikalisches Institut, Abteilung Klima- und Umweltphysik und Oeschger-Zentrum für Klimaforschung, Universität Bern
Tel. +41 31 631 85 03 (Bis 25. Juni nur per Mail erreichbar) / hubertus.fischer@climate.unibe.ch

Associate Prof. Katrin Meissner
Climate Change Research Centre, University of New South Wales Sydney
Tel. +61 9385 8962
k.meissner@unsw.edu.au

Prof. Alan Mix
College of Earth, Ocean, and Atmospheric Sciences, Oregon State University
mix@coas.oregonstate.edu

Nathalie Matter | Universität Bern

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Erdbeben auf Island über Telefonglasfaserkabel registriert
25.03.2020 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Wie Pflanzen Berge formen
20.03.2020 | Eberhard Karls Universität Tübingen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics