Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

CO2 Reduzierung durch künstlichen Auftrieb im Ozean?

16.02.2010
Meeresforscher halten Verfahren für ungeeignet

Es klingt ganz einfach: Künstliches Hochpumpen von nährstoffreichem Wasser an die Meeresoberfläche verstärkt das Algenwachstum, die Algen nehmen dabei Kohlendioxid auf und transportieren es beim Absinken mit in die Tiefe.

Ein internationales Forscherteam unter Leitung des Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR) stellte diesen "Geo-engineering" Ansatz jetzt in Computersimulationen mit einem Erdsystemmodell auf den Prüfstand. Ergebnis: Der Nutzen dieser Behandlung für den Klimapatienten Erde ist begrenzt und die Nebenwirkungen können erheblich ausfallen.

Die Studie erschien am 16. Februar in der renommierten Fachzeitschrift Geophysical Research Letters.

Dass erhebliche Anstrengungen notwendig sind, um die Auswirkungen des vom Menschen verursachten Klimawandels noch in einem vertretbaren Rahmen zu halten, ist mittlerweile unstrittig. Wie man die Konzentrationen der klimaschädlichen Spurengase, insbesondere Kohlendioxid, am besten reduziert, ist Thema zahlreicher Forschungsprojekte. Neben einer bisher nicht durchsetzbaren nachhaltigen Verringerung der Emissionen sind inzwischen auch verschiedene großtechnische Verfahren in der Diskussion, die den CO2-Anstieg in der Atmosphäre oder zumindest die globale Erwärmung bremsen sollen. In solchen Ansätzen, die unter dem Schlagwort "Geo-engineering" zusammengefasst werden, gibt es auch Ideen, wie man mehr Kohlendioxid im Ozean binden und langzeitlich speichern kann. Eine neue Methode, die mit Hilfe künstlicher Pumpen nährstoffreiches Wasser aus den Tiefen der Weltmeere an die Oberfläche bringen und so mehr CO2 im Wasser binden könnte, wurde jetzt von einem internationalen Forscherteam unter Leitung des Leibniz-Instituts für Meereswissenschaften (IFM-GEOMAR) auf ihre Wirksamkeit hin untersucht.

Einem neuen "Geo-engineering"-Ansatz zufolge soll mit mehreren hundert Meter langen Kunststoffschläuchen, die senkrecht im Ozean treiben, durch die Wellenbewegung über Rückschlagklappen nährstoffreiches Tiefenwasser an die Oberfläche gepumpt werden. In Feldexperimenten konnte ein Pumpenhersteller nach eigenen Angaben bereits zeigen, dass damit ein wesentlicher Düngeeffekt erzeugt werden kann, der z.B. für Fischfarmen wirtschaftlich interessant ist. Darüber hinaus wurde in mehreren Studien ein großskaliger Einsatz der Pumpen zur Reduktion von atmosphärischen CO2 vorgeschlagen: Ein Teil der durch die Düngung erzeugten kohlenstoffhaltigen Biomasse sinkt in die Tiefe, entzieht damit dem Oberflächenwasser CO2, das dann aus der Atmosphäre nachströmen kann. "Von der großtechnischen Machbarkeit abgesehen, hat diese Methode, wie viele andere auch, nur ein sehr begrenztes Potential und das Risiko erheblicher Nebenwirkungen", erläutert der Hauptautor der Studie, Prof. Dr. Andreas Oschlies vom IFM-GEOMAR. In der Modellstudie, die er zusammen mit Kollegen in Großbritannien und Australien durchgeführt hat, zeigte sich, dass unter günstigsten Annahmen 3 Gigatonnen Kohlendioxid pro Jahr durch dieses Verfahren gebunden werden könnten. (Zum Vergleich: Der weltweite anthropogene CO2-Ausstoß beträgt derzeit ca. 36 Gigatonnen pro Jahr). "Was uns besonders verwundert hat, ist die Tatsache, dass in unserem Computermodell der Großteil des Effekts nicht im Wasser sondern an Land stattfand", erklärt Co-Autor Dr. Markus Pahlow vom IFM-GEOMAR. "Ursache dafür sind die niedrigeren Temperaturen des hochgepumpten Wassers, was zu einer Abkühlung der Atmosphäre führt und damit auch die Zersetzung von organischem Material vor allem in den Böden verlangsamt", so Pahlow weiter. "Dieser Effekt ist über die globale Landfläche verteilt und tritt auch weit entfernt vom Einsatzgebiet der Pumpen auf, was eine Messung und damit Bewertung des Erfolgs oder Misserfolgs dieser Methode in der Praxis extrem schwierig gestalten würde", resümiert Pahlow.

"Hinzu kommt noch ein zweiter kritischer Punkt: Stellt man das Pumpen ein, steigen die atmosphärische CO2-Konzentration und Oberflächentemperaturen rasch an und übersteigen sogar das Niveau, das man ohne den Einsatz der Pumpen erreicht hätte", sagt Prof. Oschlies. Die Pumpen dürften also nie stillstehen oder abgeschaltet werden. Das ist ein bisschen so, wie in Goethes Zauberlehrling: 'Die ich rief, die Geister, werd' ich nun nicht los.'" Auch wenn sicher noch nicht alle Wechselwirkungen bekannt und korrekt modelliert sind, zeichne sich schon ab, dass auch dieses Verfahren sicher nicht die Lösung unseres Problems darstellen kann, fasst Oschlies zusammen.

Originalarbeit:
Oschlies, A., M. Pahlow, A. Yool and R. J. Matear, 2010: Climate engineering by artificial ocean upwelling - channelling the sorcerer's apprentice. Geophys. Res. Lett., 37, DOI:10.1029/2009GL041961.
Ansprechpartner:
Prof. Dr. Andreas Oschlies Tel. 0431 600-1936, aoschlies@ifm-geomar.de
Dr. Andreas Villwock (Öffentlichkeitsarbeit), Tel. 0431 600-2802, avillwock@ifm-geomar.de

Dr. Andreas Villwock | idw
Weitere Informationen:
http://www.ifm-geomar.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine Festung aus Eis und Schnee
04.10.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Vom Verschwinden der peruanischen Gletscher
02.10.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Familienunternehmer setzen eher auf Evolution als auf Disruption

16.10.2019 | Wirtschaft Finanzen

Wie ein infizierter Knochen besser heilt

16.10.2019 | Förderungen Preise

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics