Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Thüringer Horchposten ins Erdinnere erhielt noch feineres Ohr

05.01.2006


Geodynamisches Observatorium der Universität Jena mit europaweit einzigartigem Messgerät



Erdbeben sind selbst in Thüringen keine Seltenheit. Allerdings fallen sie - glücklicherweise - meist so leicht aus, dass sie vom Menschen nicht bemerkt werden. Jede noch so kleine Erschütterung wird aber von den empfindlichen Geräten im Geodynamischen Observatorium in Moxa, das von der Friedrich-Schiller-Universität Jena betrieben wird, registriert. Jetzt ist dieser Horchposten ins Erdinnere um ein weiteres hochsensibles Messgerät reicher. Installiert wurde hier ein so genanntes Strainmeter, das in einem Bohrloch im Stollen des Observatoriums mit Spezialzement einbetoniert wurde. "Es ist das einzige System dieser Art in Europa", freut sich der Leiter der Forschungsstation Prof. Dr. Gerhard Jentzsch über das Gerät, das die drei bereits vorhandenen Systeme in Moxa ergänzt.



Dank des neuen Strainmeters, dessen Installation die Jenaer Universität finanziert hat, können Deformationen in Form von Längenänderungen bis hin zu einem Zehntausendstel Mikrometer gemessen werden. "Mit dieser Auflösung sind wir in der Lage, die durch Erdbebenwellen ausgelösten horizontalen Verschiebungen zu messen, auch wenn diese Beben sehr weit entfernt sind", erläutert der Geophysiker Jentzsch. Damit können noch Beben selbst im fernen Pakistan exakt registriert werden.

Um diese Genauigkeit zu erreichen, musste das rund eine Viertel Million Euro teure Messgerät maßgeschneidert werden. Die Spezialanfertigung entwickelte Professor Hiroshi Ishii in Japan. Der Erdbebenforscher ließ ein recht handliches, nur rund 1,5 m großes Gerät fertigen. Es hat in der Horizontalen drei Sensoren, die über den Durchmesser von lediglich 104 mm mindestens die gleiche Auflösung erzielen, wie die 300-mal größeren bisherigen Messgeräte in Moxa. Zusätzlich ist am neuen Strainmeter noch eine vertikale Komponente eingebaut, die eine räumliche Vermessung des Deformationsfeldes ermöglicht.

Da nach der Installation keine Reparatur mehr ausgeführt werden kann, war eine absolut exakte Montage des Messgeräts im Beton notwendig. Dafür reiste Prof. Ishii mit einem Team eigens nach Moxa, um die Jenaer Geowissenschaftler zu unterstützen. Am Ende war die Montage erfolgreich, wie ersten Probemessungen belegen. "Außerdem konnten wir viel über den Einsatz von Spezialbeton lernen und wurden so ganz nebenbei zu ,Beton-Facharbeitern’", ergänzt Prof. Jentzsch schmunzelnd.

Der Geophysiker von der Universität Jena hofft nun darauf, dass das neue Messgerät auch alle Erwartungen erfüllt und Moxa seine Aufgaben im weltweiten Netz der Beobachtungsstationen mit noch größerer Präzision erfüllen kann und für die Forschung neue Impulse bringt. "Doch auch das beste Gerät kann weder den Zeitpunkt, noch den Ort oder die Stärke eines Bebens vorhersagen", schränkt Jentzsch zu hohe Erwartungen ein. "Wir können durch die neuen Messungen und Erkenntnisse nur versuchen, Schaden zu begrenzen".

Übrigens hat Jentzsch noch vor Weihnachten im Gegenzug ein Messgerät des Observatoriums in Japan installiert, das dort als Referenz für weitere Geräteentwicklungen dienen soll.

Kontakt:
Prof. Dr. Gerhard Jentzsch
Institut für Geowissenschaften der Friedrich-Schiller-Universität Jena
Burgweg 11, 07749 Jena
Tel.: 03641 / 948660, Fax: 03641 /948662
E-Mail: Gerhard.Jentzsch[at]uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Beben Erdinnere Horchposten Messgerät Moxa Observatorium Strainmeter

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Schwerefeldbestimmung der Erde so genau wie noch nie
13.06.2019 | Technische Universität Graz

nachricht Magnetismus im Erdmantel entdeckt
06.06.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics