Damit Tiefenbohrungen sicherer und günstiger werden

RWTH-Institut arbeitet an einer Datenbasis zum Potential der Erdwärme

Will man Erdwärme nutzen, muss sie durch eine teure Tiefenbohrung erschlossen werden. Vielfach liegt jedoch nur wenig Wissen über die Zusammensetzung des Gesteins im Untergrund vor. Genau diese Angaben über Sedimentformation und Wärmeleitfähigkeit sind aber entscheidendend, um die Geothermie am richtigen Standort, in der ausreichenden Tiefe und damit zu möglichst günstigen Kosten zu erschließen. Ein Projekt des Lehr- und Forschungsgebiets für Angewandte Geophysik der RWTH Aachen unter der Leitung von Univ.-Prof. Dr. Christoph Clauser sorgt dabei jetzt für Abhilfe. In dem durch das Bundesumweltministerium mit 480.000 Euro geförderten Vorhaben erarbeitet derzeit Diplom-Geophysiker Andreas Hartmann für Süddeutschland eine Datenbasis, die das geothermische Potential des Untergrunds aufzeigt.

„Über die geologischen Landesämter und den Wirtschaftsverband Erdöl- und Erdgasgewinnung sind die Daten der Erdölindustrie aus der Schwäbischen Alb und Franken verfügbar“, beschreibt Hartmann ein Standbein der Informationsbeschaffung. Als zweite Quelle dienen dem Geophysiker und seinem vier Mann starken Team Messungen an vorhandenen Bohrkernen. Dabei legen die Forscher ihr Hauptaugenmerk auf die Wärmeleitfähigkeit. „Die Temperatur in der Tiefe bestimmt die Qualität der Energie“, so Hartmann, „die Wärmeleitfähigkeit bestimmt ihre Quantität“. Zum Beispiel ist die Wärmeleitfähigkeit umso geringer, je höher der Tonanteil der Gesteine ist. Gerade aber die Entzugsleistung – also die Menge an Energie, die entzogen werden kann – ist entscheidend für die rentable Nutzung der Geothermie. Bei den Untersuchungen zur Struktur der Gesteine werden die Geologien vom Institut für Makromolekulare Chemie unterstützt, das dazu eigens ein spezielles NMR-Gerät konstruiert hat. Außerdem wird mit den Firmen Geophysica und Ecos kooperiert, die ihr spezielles Know-how einbringen.

Als Ergebnis des Projekts wird Ende des Jahres eine detaillierte Datenbasis der Gesteinseigenschaften des untersuchten Gebiets vorliegen. „Dies bildet dann eine solide Grundlage für die Entscheidung und Planung von Tiefenbohrungen“, resümiert der RWTH-Mitarbeiter Hartmann. Investoren und Betreibern solcher Anlagen wird ein verlässliches Hilfsmittel zur Auslegung der Tiefenbohrung in die Hand gegeben. Dies erhöht die Erfolgsaussichten von Tiefenbohrungen und trägt zur Kostenoptimierung bei.

Nächstes Ziel ist die Übertragung der Methodik auf andere Gebiete, wie etwa Nordrhein-Westfalen. Ergänzt durch aufwändige Simulationen im Zentrum für Hochleistungsrechnen der RWTH Aachen wird die Mannschaft der Angewandten Geophysik in einem anvisierten Nachfolgeprojekt eine weitere Region in Deutschland geothermisch kartieren. Dies ist auch deshalb möglich, weil die Ergebnisse aus Süddeutschland nach Wärmeleitfähigkeit und -kapazität, nach Porosität und Permeabilität einheitlich klassifiziert werden. Dies erlaubt eine überregionale Verwertung der Resultate.

Weitere Informationen zu dem Projekt erhalten Sie bei Univ.-Prof. Dr. Christoph Clauser und Dipl.-Geol. Andreas Hartmann, Lehr- und Forschungsgebiet für Angewandte Geophysik der RWTH Aachen, Lochnerstraße 4-20, Telefon 0241/80-94825, Fax 0241/80-92132, E-Mail c.clauser@geophysik.rwth-aachen.de und andreas@geophysik.rwth-aachen.de.

Media Contact

Toni Wimmer idw

Weitere Informationen:

http://www.rwth-aachen.de

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer