Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entdeckung der Langsamkeit im Erdinneren

29.07.2005


Forscher der Universitäten Jena und Bayreuth belegen in aktueller "Science"-Publikation über Diffusionsprozesse im unteren Erdmantel, dass diese Zone heterogener ist als bisher angenommen



Es sind Extremereignisse wie Vulkanausbrüche, Erd- oder Seebeben, die uns gewahr werden lassen, dass sich tief unter unseren Füßen etwas regt. Unsere Ozeane und Kontinente ruhen auf riesigen Platten, die sich einige Zentimeter im Jahr bewegen. An bestimmten Stellen schiebt sich eine Platte unter die andere, taucht in das Erdinnere ab und wird dort bei hohem Druck und Temperaturen quasi recycelt. Bisher hatte man angenommen, dass sich die chemischen Zusammensetzungen der abtauchenden Erdplatten und des umgebenden Mantelgesteins rasch angleichen. "Es war eine gängige Hypothese, dass der untere Erdmantel chemisch relativ homogen ist", sagt Prof. Dr. Falko Langenhorst. Der Mineraloge von der Friedrich-Schiller-Universität Jena und Geowissenschaftler der Universität Bayreuth konnten nun zeigen, dass sich der Stoffaustausch im Erdmantel jedoch extrem langsam vollzieht. "Demzufolge ist diese Mantelzone, die etwa 670 km unter der Erdoberfläche beginnt und bis zu einer Tiefe von 2.900 km reicht, vermutlich heterogener als bisher gedacht", sagt Langenhorst. Er und seine Bayreuther Kollegen haben nun erstmals in Experimenten nachvollzogen, wie schnell sich die Elemente im unteren Mantel vermischen können. Sie ermittelten die Diffusionskoeffizienten von Silikat-Perovskit für verschieden hohe Drücke und Temperaturen. Der untere Erdmantel besteht zu 80 % aus Perovskit, dem häufigsten Mineral der Erde. Die Ergebnisse der Diffusionsexperimente werden in der renommierten Zeitschrift "Science" publiziert und sind gestern (28.07.) in Science Express online veröffentlicht worden.



Um zum Ziel zu gelangen waren aufwendige Hochdruckexperimente nötig, die Dr. Christian Holzapfel, Prof. Dr. David Rubie und Dr. Daniel Frost aus Bayreuth durchführten. Prof. Langenhorst und Dr. Holzapfel bestimmten dann den Elementaustausch im Nanometerbereich mit dem Transmissionselektronenmikroskop. Um die Vorgänge im Erdinneren zu simulieren, waren je zwei zylinderförmige Proben von Silikat-Perovskit mit verschiedenen Konzentrationen von Eisen und Magnesium aneinandergelegt und bis zu 24 Stunden Drücken von 22 bis 26 Gigapascal und Temperaturen zwischen 1.973 und 2.273 Kelvin ausgesetzt worden. "Dabei kommt es zum Ausgleich des Konzentrationsunterschiedes. Denn durch die Brownsche Molekularbewegung bewegen sich die Teilchen, in unserem Falle die Eisen- und Magnesiumionen im Perovskit, von der höheren zur niedrigeren Konzentration", erklärt Langenhorst das zugrundeliegende Prinzip.

Als die Forscher die Diffusionsprofile untersuchten, stellten sie fest, dass der Bereich, in dem die Eisen- und Magnesiumkonzentrationen begonnen hatten, sich einander anzugleichen, nur zwischen 150 bis 1.500 Nanometer groß war. Das bedeutet, dass der Diffusionsprozess trotz hoher Temperaturen, die ihn eigentlich beschleunigen sollten, extrem langsam vonstatten geht, so das Fazit der Wissenschaftler. "Aus der Länge des Profils, das man erhält, wenn die Proben höchstens einen Tag den Extrembedingungen ausgesetzt sind, lässt sich abschätzen, über welche Entfernungen der Diffusionsprozess in geologischen Zeiträumen in der Natur wirklich abläuft", erklärt Langenhorst. Nach den Messungen der Forscher findet in 4,5 Milliarden Jahren, so alt ist unsere Erde, nur ein Austausch im Maßstab von wenigen Metern statt.

Neben der Entdeckung der Langsamkeit des Prozesses machen die Autoren der "Science"-Publikation auch Aussagen darüber, warum die Homogenisierung in der Silikat-Perovskit-Schicht so langsam abläuft. Wie bei allen Prozessen ist der langsamste Reaktionsschritt geschwindigkeitsbestimmend für den Gesamtprozess. Die am langsamsten diffundierenden Spezies im Perovskit sind laut der Wissenschaftler die divalenten Kationen Eisen und Magnesium. Diese "Bummelanten" sorgen dafür, dass der Diffusionsprozess insgesamt langsam abläuft. Damit haben die Forscher ein weiteres Rätsel um die Recycling-Vorgänge im Erdinneren gelöst. "Auch wenn diese Diffusionsprozesse unmerklich langsam vor sich gehen, so gibt es durch die mechanische Umwälzung des Mantels einen steten Stoffaustausch zwischen Erdinnerem und -äußerem, der sicherlich dazu beigetragen hat, dass Leben auf der Erde entstehen konnte", macht Prof. Langenhorst deutlich.

Zur Diffusion:

Diffusion ist der Ausgleich eines Konzentrationsunterschiedes von gasförmigen oder gelösten Stoffen oder Energie, bei dem sich die Teilchen im statistischen Mittel durch Brownsche Molekularbewegung temperaturabhängig von der höheren zur niedrigeren Konzentration bewegen. Die Diffusion ist passiv und unspezifisch, d.h. einzelne Teilchen bewegen sich zufällig und ungerichtet. Bei höheren Temperaturen geht sie jedoch schneller vor sich. Sind in einem Raum Teilchen oder Energie ungleichmäßig verteilt, dann führt die ungeordnete thermische Bewegung der Teilchen mit der Zeit dazu, dass sie in diesem Raum statistisch gleichmäßig verteilt sind, ihre Konzentration also an jedem Messpunkt im Raum gleich hoch ist.

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Diffusionsprozess Erdinnere Erdmantel Teilchen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Der Januskopf des südasiatischen Monsuns
15.06.2018 | Max-Planck-Institut für Chemie

nachricht Was das Eis der West-Antarktis vor 10.000 Jahren gerettet hat, wird ihr heute nicht helfen
14.06.2018 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics