Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meere im Innern der Erde?

05.04.2005


Wasser aus Steinen zu holen, ist eine Vorstellung, die etwas Märchenhaftes an sich hat: vom Zauberstab berührt, öffnet sich der Fels und gibt das kühle Nass frei. Ganz so wundersam sieht die Welt in den Augen von Geologen nicht aus; dennoch liefern ihre Entdeckungen Grund genug zur Verwunderung. Scheinbar „trockene“ Gesteine könnten demnach große Wasservorräte bergen, und zwar am meisten dort, wo Fachleute bis vor kurzem am wenigsten vermuteten: in den Tiefen des Erdmantels. Am Institut für Geologie und Mineralogie untersucht Prof. Dr. Esther Schmädicke die Wasserspeicherkapazität von Mineralen, die lange als extrem wasserarm galten.


Gestein (Peridotit) vom mittelatlantischen Rücken mit den Hauptmineralen Olivin und Pyroxen. Mikroskopische Aufnahme einer 25 mm dicken Gesteinsscheibe im Durchlicht bei gekreuzten Polarisatoren. Die Farben (Interferenzfarben) hängen von der Art des Minerals und dessen Orientierung ab. Die Bildbreite entspricht etwa 0,5 mm. Abbildung: Institut für Geologie und Mineralogie



Bisher ist man davon ausgegangen, daß im Erdmantel unterhalb von 100 bis 150 km Tiefe kein Wasser mehr vorhanden sein dürfte. Diese Annahme liegt nahe, weil Minerale, die als Wasserspeicher bekannt sind, dem mit dem Abstand von der Erdoberfläche wachsenden Druck nur begrenzt standhalten können. Selbst die wasserführenden Minerale mit der größten Druckstabilität, wie Amphibol und Phlogopit, zerfallen, sobald der Druck einen Wert von 30 bis 40 Kilobar übersteigt, wie es in der genannten Tiefe der Fall ist.

... mehr zu:
»Erdmantel »Gestein »Mineral »Pyroxen


Die gewaltige Kraft dieser „Presse“ wandelt Amphibol zum wasserfreien Pyroxen. Dabei wird Wasser abgegeben, was dazu führen kann, dass Gestein im Erdmantel schmilzt, also Magma entsteht. Der größte Teil des Erdmantels, der bis an die Grenze zum Erdkern in 2900 km Tiefe reicht, sollte demnach nahezu wasserfrei sein, da er nur aus Gesteinen mit „trockenen“ Mineralen wie Olivin und Pyroxen sowie deren Hochdruckäquivalenten besteht.

Hoher Druck schafft mehr Defekte

Nach neueren Erkenntnissen ist es allerdings möglich, dass die Gitter dieser Minerale als Fremdkörper Bausteine von Wasser enthalten, sogenannte Hydroxyldefekte, Gruppen aus je einem Sauerstoff- und Wasserstoff-Atom. Der Anteil der OH-Defekte bewegt sich zwischen 10 ppm, zehn Teilchen auf eine Million, und mehreren 100 ppm. Welche Faktoren den Einbau solcher Fehlstellen in ein Mineralgitter begünstigen, kann mit Hilfe von Experimenten geklärt werden.

Für solche „geheimen“ Wasservorräte gilt nicht, dass sie durch steigenden Druck aus dem Gestein vertrieben werden. Im Gegenteil deuten erste Ergebnisse der experimentellen Petrologie darauf hin, daß die OH-Aufnahmekapazität von Mineralen zunimmt, wenn der Druck wächst.

Das würde bedeuten, dass auch tiefere Bereiche des Erdmantels als Wasserspeicher fungieren können. Die Konzentrationen könnten dort um eine Größenordnung höher liegen, als sie bisher bei den Versuchen zu messen waren. Trotz der auch dann noch relativ geringen Anteile von Wasser im Gestein hätte der Erdmantel aufgrund seines Volumens die Kapazität, eine Wassermenge zu beherbergen, die die aller Ozeane bei weitem übersteigt.

Die Frage, ob die experimentell ermittelte Speicherkapazität auch den tatsächlichen Wassergehalten im Erdmantel entspricht, kann heute noch niemand beantworten. Zu einer Tiefe von mehr als 150 km vorzudringen, ist nicht möglich; der größte Teil des Erdmantels entzieht sich einer direkten Untersuchung.

Immerhin können aus vergleichsweise geringen Tiefen Fragmente des Erdmantels durch Laven an die Erdoberfläche transportiert werden. Darüber hinaus wurden an den mittelozeanischen Rücken Bereiche entdeckt, in denen die ozeanische Kruste stellenweise fehlt und die Gesteine des Erdmantels an der Oberfläche liegen. Analysiert man die Wassergehalte in solchen Proben, kann zumindest das Wasserreservoir des obersten Erdmantels abgeschätzt werden. Die Dichte der Hydroxyldefekte in Mantelmineralen dürfte die physikalischen Eigenschaften des Erdmantels, wie elektrische Leitfähigkeit oder Fließverhalten, erheblich beeinflussen und auch für Plattentektonik, Konvektion im Erdinnern, Wärmetransport und Magmatismus eine große Rolle spielen.

In Erlangen sollen Gesteine vom Mittelatlantischen Rücken (siehe Abbildung) analysiert werden, die im Rahmen des „Integrated Ocean Drilling Program“ (IODP) im Bereich 14-16º nördlicher Breite erbohrt wurden. Dieses Tiefseebohrprogramm, an dem Wissenschaftler aus über 20 Ländern beteiligt sind, dient der Erforschung von bislang unzugänglichen Bereichen des Meeresbodens.

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Erdmantel Gestein Mineral Pyroxen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter
21.09.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Warnung vor Hybris bei CO2-Entzug
20.09.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics