Untersuchung der Eismeervulkane mit "Mars-Detektoren"

Forschungseisbrecher "PFS Polarstern" vom Alfred-Wegener-Institut für Polar- und Meeresforschung

Am 16. Juli 2004 bricht eine internationale Forschungsgruppe unter Leitung des Max-Planck-Instituts für Chemie in Mainz zu einer sechswöchigen Expedition mit dem Forschungseisbrecher „PFS Polarstern“ vom Alfred-Wegener-Institut für Polar- und Meeresforschung auf, um im Arktischen Ozean entlang dem Lena-Trog und dem westlichen Gakkel-Rücken primitive Vulkane und deren Ursprung zu erkunden. Nach der äußerst erfolgreichen AMORE-Arktisexpedition im Jahre 2001 werden bei der jetzigen Messkampagne die besondere geologische Situation am Lena Trog sowie neue Technologien benutzt, um nach primitiveren Vulkanen als den bisher gefundenen zu suchen.

Die meisten Vulkane bilden sich durch einen Schmelzprozess im oberen Erdmantel und dem darauf folgenden Transport des Materials zur Oberfläche sowie Ausbruch. Bei einer kleinen Anzahl von Vulkanen bleibt der Schmelzprozess unvollständig, und dies ermöglicht den Wissenschaftlern, das Frühstadium der Vulkan-Entwicklung zu untersuchen. Eine Stelle mit solchen „primitiven“ Vulkanen liegt unterhalb der arktischen Eiskappe, entlang dem Grabensystem Gakkel-Rücken / Lena-Trog.

Mittelozeanische Rücken sind Zonen mit intensiver vulkanischer Tätigkeit unterhalb des Meeresbodens, in denen neue ozeanische Kruste durch Auseinanderspreizung des Meeresbodens entsteht. Wenn sich nun die Spreizgeschwindigkeit verringert, nimmt auch der Grad der chemischen Entwicklung der Vulkane ab. Der Gakkel-Rücken und der Lena-Trog sind das sich am langsamsten spreizende ozeanische Rückensystem der Erde. Vor drei Jahren waren die ersten vulkanischen Gesteine aus dem Gakkel-Rücken eine Sensation und haben unter Wissenschaftlern enormes Interesse an ihrer Beschaffenheit hervorgerufen.

Beim Lena-Trog kommt ein weiterer Faktor ins Spiel: Im Gegensatz zum Gakkel-Rücken spreizt sich dort der Mittelozeanische Rücken schräg zum Graben-Tal. Dieser geometrische Effekt verstärkt das Abkühlen des oberen Mantels und hat noch primitivere Vulkane zur Folge. Schon die Vulkane des Gakkel-Rückens zeigten unerwartete Änderungen ihres chemischen und physikalischen Charakters, und es wird erwartet, dass diese Effekte in einem Gebiet mit abgewinkelter Spreizung noch verstärkt werden. Insbesondere wurden anomale Anreicherungen von Alkalielementen sowohl in Basalten als auch deren Mantel-Residuen beobachtet.

Bei dieser Expedition wird zum ersten Mal ein neues Instrument eingesetzt, mit dem man die chemische Zusammensetzung von Gesteinen schon auf See bestimmen kann. Die Proben aus den Tiefen des Ozeans werden an Bord gebracht und in den Schiffslaboratorien untersucht. Das Herzstück des mit Elektronenstrahlanregung arbeitenden, energiedispersiven Röntgenspektrometers bildet ein neuartiger Silizium-Driftdetektor von der gleichen Art, wie er auch im Alpha-Röntgen-Spektrometer an Bord der Mars-Rover bei der aktuellen NASA-Mission verwendet wird. Entwickelt wurde der Detektor vom Halbleiterlabor der Max-Planck-Institute für Physik und Extraterrestrische Physik in Zusammenarbeit mit der Firma KETEK GmbH in München. Die neue Technologie ermöglicht es den Wissenschaftlern erstmals, die Probennahme direkt durch die beobachteten chemischen Effekte zu steuern. „Bisher dauerte es Wochen oder Monate, bis die Proben an Land analysiert wurden, lange nach Ende der Expedition“, sagt Dr. Jonathan Snow von der Abteilung Geochemie des Max-Planck-Instituts für Chemie und Leiter der etwa 15-köpfigen Arbeitsgruppe Petrologie auf der „Polarstern“. „Jetzt kann ich innerhalb weniger Stunden nach der Probenentnahme sehen, um welche Art von Vulkan es sich handelt.“

Insgesamt werden 47 Wissenschaftler und Techniker von zahlreichen namhaften Forschungsinstituten an der Expedition teilnehmen und Arbeiten auf den Gebieten Petrologie, Ozeanographie, Bathymetrie, Meereisphysik und Luftchemie durchführen.

Das Projekt wird unterstützt durch die Deutsche Forschungsgemeinschaft (DFG) und die National Science Foundation (NSF).

Weitere Informationen erhalten Sie von:

PD Dr. Jonathan Snow
Max-Planck-Institut für Chemie, Mainz
Tel.: 00870-321842611 /711 (Satellitenverbindung zu Polarstern)
E-Mail: jsnow.d@awi-polarstern.de

Dr. Wolfgang Huisl
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305 – 225
E-Mail: pr@mpch-mainz.mpg.de

Dr. Mirjana Kotowski
Max-Planck-Institut für Chemie, Mainz
Tel.: 06131 305 – 465
E-Mail: pr@mpch-mainz.mpg.de

Media Contact

Dr. Mirjana Kotowski idw

Weitere Informationen:

http://www.mpch-mainz.mpg.de

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer