Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Von kontaminierten Böden und Tagesbrüchen: Neue Methoden der Umwelt- und Ingenieurgeophysik

06.09.2000


Ingenieur - Geophysiker benötigen stets neue oder weiterentwickelte Methoden, um Messungen durchzuführen, Daten zu erfassen, zu bearbeiten und zu interpretieren: zum Schutz von Mensch und Umwelt.

Ob sie nun Tagesbrüche in Kohlengebieten untersuchen oder Grundwasser entdecken, sich mit radioaktiven Stoffen in Salzstöcken beschäftigen oder historische Gebäude auf ihre "Untergrund-Standhaftigkeit" überprüfen - Ingenieur - Geophysiker interessieren sich für das, was in den ersten Dekametern unter der Erdoberfläche vor sich geht. Dazu benötigen sie stets neue oder weiterentwickelte Methoden, um Messungen durchzuführen, Daten zu erfassen, zu bearbeiten und zu interpretieren: zum Schutz von Mensch und Umwelt. Die internationale Tagung "Explore Tomorrow´s Fundaments" (03. bis 07.09.2000) präsentiert solche Methoden der Ingenieurgeophysik. Es ist das sechste Treffen der Environmental and Engineering Geophysical Society, European Section (EEGS-ES), das erstmals in Deutschland - hier in der RUB - stattfindet.

Probleme und Ziele

Die Untersuchung des besonders nutzbaren Teils der Erde im oberflächennahen Bereich von einigen Metern bis zu einigen Kilometern steht immer mehr im Fokus des geowissenschaftlichen Interesses - sei es zur Rohstoffproduktion, um Georisiken abzuschätzen und zu verhindern oder um Ressourcen zu schützen, zu pflegen und nachhaltig zu managen. Die Tagung in Bochum zeigt eine breite Palette von aktuellen Fallbeispielen und demonstriert, welche Verfahren bei diesen Problemstellungen und Zielen zum Einsatz kommen, wo ihre Möglichkeiten und Grenzen liegen. Interdisziplinär arbeiten Ingenieure, Geophysiker und weitere Geowissenschaftler zusammen. Verschiedene Projekte zeigen die Breite und praktische Bedeutung ingenieurgeophysikalischer Entwicklungen. Mess- und Auswertemethoden wie Georadar, Geoelektrik, der "random walk" oder gar Seismik mit Vibratoren stehen dabei im Mittelpunkt. Gemeinsam diskutieren die Wissenschaftler, was die neuen Technologien im Feldfall leisten.

Kontaminierter Untergrund

Neue Verfahren der geophysikalischen Erkundung ermöglichen es beispielsweise, zuverlässige Aussagen darüber zu treffen, wie sich Schadstoffe im Untergrund ausbreiten. Sie erfassen nicht nur die Ausbreitung der Schadstoffe, sondern auch das zeitliche Ausbreitungsverhalten unter ortsspezifischen geologischen Verhältnissen - und bilden so eine Grundlage für Prognosen und Sanierungsmaßnahmen.

Radioaktive Abfälle und Reststoffe

Wenn Schadstoffe im Untergrund gelagert werden, ist es entscheidend, inwieweit die Gesteinsformationen hinsichtlich ihrer Ausdehnung, Standfestigkeit und Dichte geeignet sind, um die Sicherheit für Mensch, Baugrund und Bauwerk zu gewährleisten. Geophysikalische großräumige Messungen geben Auskunft darüber, z. B. bei Steinsalz, Granit und Tonsteinen, sowie über die benachbarten Gesteine und Verhältnisse, etwa wasserstauende Schichten und tektonische Störungen. Außerdem messen Geophysiker die kleinräumigen physikalischen Eigenschaften der Gesteine vor Ort, um Veränderungen zu erfassen, die beispielsweise durch Hohlraumerstellung bedingt sind, und um somit insgesamt das Langzeitverhalten dieser Räume und des Gesteins zu prognostizieren.

Hohlräume und Einbrüche

Vor allem in Gebieten mit intensivem Bergbau oder Verkarstungen oder aber auch bei untertägigen Bautätigkeiten kommt es oft vor, dass Einstürze von Hohlräumen immensen Schaden an der Oberfläche, an Leben und Gütern verursachen. Die zentrale Aufgabe ist es daher, diese Hohlräume aufzufinden und ihre Gefahr abzuschätzen. Viele der geophysikalischen Verfahren, vor allem in Kombination, ergeben hier wertvolle Informationen. Das Auflösungsvermögen der Verfahren wird ständig verbessert, um auch kleinere und tiefere Hohlräume detektieren zu können.

Archäologische Stätten

Zunehmend spielen geophysikalische Verfahren auch eine Rolle, wenn es darum geht, archäologische Stätten aufzudecken, weil sie über größere Areale recht schnell und kostengünstig einen Überblick verschaffen. - und somit gezielte Ausgrabungen ermöglichen. Sie helfen zu entscheiden, welche Teile einer Stätte kulturhistorisch bedeutend sind und speziell untersucht werden sollen.

Grundwasservorkommen

Wasser wird weltweit immer mehr zu einem knappen Gut. In Ballungsräumen steigt der Bedarf rapide, ebenso durch intensive Landwirtschaft und Industrie. Neue Erkundungsstrategien, die verschiedene geophysikalische Verfahren modifizieren, adaptieren und kombinieren, tragen dazu bei, Wasservorkommen zu erschließen, und ermöglichen es, Qualität und Mengen immer besser zu überwachen. Da dieses Arbeitsgebiet zunehmend wichtiger wird, hat es sich mittlerweile zu einer Spezialdisziplin in der Geophysik unter dem Namen Hydrogeophysik entwickelt.

Verfahrensentwicklung

Die Aussagekraft geophysikalischer Messungen zu diversen Geoproblemen ist auch abhängig davon, wie effizient die eingesetzten Verfahren selbst sind. Daher macht es sich die Geophysik zur Aufgabe, Verfahren neu- und weiterzuentwickeln. Beispiel "random walk": Die rasterlose Messung arbeitet mit einem satellitengestützen Navigationssystem ("Global Positioning System" - GPS), die Daten werden über Funkstrecken in einen Computer übertragen, der sie in Echtzeit auf dem Bildschirm darstellt. Dadurch entsteht eine optimierte Messwertaufnahme. Dieses Verfahren erlaubt Erkundungen des Untergrunds, z. B. um gezielt Altlasten aufzufinden. Es ist wesentlich schneller und kostengünstiger sind als konventionelle Methoden. Unter den Neuentwicklungen sticht auch die "Oberflächen Nuklear Magnetische Resonanz" (SNMR) hervor, die die in der Medizin bekannten Prinzipien der Kernspinresonanz zum ersten Mal geophysikalisch nutzt. Dieses Verfahren ermöglicht es, Wasser im Untergrund direkt nachzuweisen und abzuschätzen, ob und wie man es fördern kann. So können die Wissenschaftler zum Beispiel in Namibia mit Hilfe dieser Methoden heute leichter Grundwasser auffinden.

Weitere Informationen

Prof. Dr. Dr. h.c. Lothar Dresen, Fakultät für Geowissenschaften der RUB, Tel. 0234/32-23292, Fax 0234/32-14181, dresen@angewandte-geophysik.ruhr-uni-bochum.de
Dr. Wolfgang Budach, EEGS-ES Meeting Sekretariat, Unikontakt, Tel. 0234/32-22199, Fax 0234/32-14646, wolfg.budach@ruhr-uni-bochum.de
Prof. Dr. Ugur Yaramanci, TU Berlin, FG Angewandte Geophysik, Tel. 030/314-72599, -72627, Fax 030/314-72597, E-Mail: yaramanci@tu-berlin.de,
 Internet: http://gp8.bg.tu-berlin.de

Weitere Informationen finden Sie im WWW:

Dr. Josef König | idw

Weitere Berichte zu: Geophysik Geophysiker Gestein Ingenieurgeophysik Untergrund

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Geowissenschaften: Was unter dem Wald schläft
15.10.2018 | Ruhr-Universität Bochum

nachricht Für Saturnmond-Mission: Einschmelzsonde getestet
12.10.2018 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

17.10.2018 | Materialwissenschaften

Zwei Städte, ein Operationstisch

17.10.2018 | Medizin Gesundheit

Immer mehr Fernseh-Zuschauer nutzen einen Second Screen

17.10.2018 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics