Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Beitrag von Bakterienresten zur Bodenfruchtbarkeit bisher unterschätzt

03.12.2012
Überreste von abgestorbenen Bakterien haben für die Böden weltweit eine viel größere Bedeutung als bisher angenommen.
Etwa 40 Prozent der mikrobiellen Biomasse werde in organische Bodenbestandteile umgewandelt, schreiben Wissenschaftler des Helmholtz-Zentrum für Umweltforschung (UFZ), der Technischen Universität Dresden, der Universität Stockholm, des Max-Planck-Instituts für Entwicklungsbiologie und der Leibniz-Universität Hannover im Fachblatt "Biogeochemistry". Bisher gab es keine derartigen quantitativen Aussagen zum Anteil der mikrobiellen Biomasse.

Es wurde angenommen, dass die organischen Bestandteile des Bodens größtenteils aus zerfallenem Pflanzenmaterial stammen würden, das in Huminstoffe umgewandelt wird. Diese These konnten die Wissenschaftler im Laborexperiment und Feldversuch nun widerlegen. Offenbar wird das leicht biologisch abbaubare Pflanzenmaterial zunächst in mikrobielle Biomasse überführt und erst danach zur organischen Bodensubstanz.
Organische Bodenbestandteile stellen den größten Anteil an terrestrisch gebunden Kohlenstoff in der Biosphäre dar. Sie haben deshalb nicht nur eine große Bedeutung für die Fruchtbarkeit der Böden und die Erträge der Landwirtschaft. Sie sind auch einer der Schlüsselfaktoren, die die Kohlendioxidkonzentration in der Atmosphäre kontrollieren. Je nachdem wie diese Ressource gemanagt wird, kann der Klimawandel daher gebremst oder beschleunigt werden.

Im Labor hatten die Wissenschaftler zunächst in einem Inkubationsexperiment Modell-Bakterien mit dem stabilen Isotop 13C markiert und in Bodenmaterial eingebracht, das aus dem Langzeitexperiment „Ewiger Roggenbau“ in Halle/Saale stammt. Nach 224 Tagen Inkubationszeit wurde der Verbleib des Kohlenstoffs der Bakterien bestimmt. „Als Ergebnis fanden wir Reste von Bakterienzellwänden in Größen bis 500 x 500 Nanometern überall in unseren Bodenproben. Solche Fragmente wurden auch schon in anderen Studien beobachtet, aber nie weitergehend diskutiert und quantifiziert“, erklärt Prof. Matthias Kästner vom UFZ. Offenbar wird die Anlagerung der Reste von Bakterienzellwänden von Peptiden und Proteinen aus den Zellen unterstützt, die in höherem Maße als andere Zellbestandteile im Boden verbleiben und dafür sorgen, dass sich auf den mineralischen Bodenbestandteilen ein Film aus organischen Molekülen bildet, in dem der Kohlenstoff der abgestorbenen Bakterien gespeichert wird.

Im Lauf der letzten 150 Jahre ist der Dammagletscher in der Schweiz um insgesamt rund einen Kilometer Länge geschrumpft. Zurück blieb Granitgestein, auf dem sich in dieser Zeit neuer Boden gebildet hat.

Foto: Christian Schurig/ UFZ


Die elektronenmikroskopische Aufnahme zeigt Bakterien (Hyphomicrobium sp.; gelb), die z. T. auf festen Oberflächen, Böden oder sedimentkörnern aufwachsen. Während des Wachstums sterben auch immer Zellen ab und deformierte bzw. fragmentierende Zellhüllen bleiben zurück. Kleinteilige Fragmente dieser Hüllen (rot) stellen dann die mikropartikuläre Matrix in Böden und Sedimenten dar.

Foto: Burkhard Schmidt-Brücken, Institute of Material science/TU Dresden; Kolorierung: Christian Schurig/ UFZ

Wenn die Fragmente der abgestorbenen Bakterienzellwände austrocknen, dann verlieren sie ihre gummiartigen Eigenschaften und können hart wie Glas werden. Wird der Boden später wieder feucht, können Sie dann jedoch unter Umständen keine Feuchtigkeit mehr aufnehmen – eine wichtige Voraussetzung, um von anderen Bakterien wieder abgebaut werden zu können. Dies wäre die einfachste Erklärung für die Beständigkeit von theoretisch leicht abbaubaren Kohlenstoffverbindungen im Boden. „Dieser neue Ansatz erklärt viele Eigenschaften der organischen Bodenbestandteile, die früher widersprüchlich erschienen“, so Matthias Kästner.

Auf die Idee gekommen waren Kästner und sein Team durch frühere Untersuchungen in den 1990er Jahren zum Abbau des Schadstoffs Anthracen in belasteten Böden von Gaswerksstandorten. Bei Isotopenanalysen zeigte sich damals, dass Kohlenstoffrückstände gebunden waren, die von Bakterien stammen könnten. Mit Unterstützung durch die Deutsche Forschungsgemeinschaft (DFG) begannen sie, ab 2000 im Rahmen von zwei Schwerpunktprogrammen diese Spur zu verfolgen.

Nach dem Laborexperiment folgte die Überprüfung der These im Freiland. Im Sommer 2009 nahmen die Forscher Bodenproben im Vorfeld des Dammagletschers im Schweizer Kanton Uri. Im Lauf der letzten 150 Jahre ist dieser Gletscher um insgesamt rund einen Kilometer Länge geschrumpft. Zurück blieb Granitgestein, das von Lebewesen mit einer Bodenentwicklung einhergehend langsam wieder besiedelt wurde. Auf Pionierpflanzen wie Moose und Gräser folgten Sträucher und später auch Bäume, wenn sich hier Boden neu gebildet hat. Nicht nur für Klimaforscher, sondern auch für Ökologen ist der Dammagletscher deshalb inzwischen zu einem wichtigen Freilandlabor geworden, in dem verschiedenste Studien laufen. Der untersuchte Boden der Proben war zwischen 0 und 120 Jahren alt und erlaubte so Einblick in die Prozesse der frühen Bodenentwicklung.
Bei den darauf folgenden Untersuchungen mittels Rasterelektronenmikroskopie am Max-Planck-Institut für Entwicklungsbiologie in Tübingen zeigte sich auch hier, dass mit dem Alter der Böden die Bedeckung der Mineralpartikel im Boden mit einem Film aus Rückständen von Bakterienzellwänden zugenommen hatte. These und Laborergebnisse konnten also im Freiland bestätigt werden. Möglich wurden diese neuen Erkenntnisse nicht zuletzt durch Fortschritte in der Rasterelektronenmikroskopie, die es inzwischen erlaubt, solche winzigen Bodenbestandteile besser zu erkennen und auszuwerten.

Der überwiegende Teil des Eintrags an Pflanzenrückständen in fruchtbare Böden wird also schnell von Mikroorganismen wie Bakterien verarbeitet, was zu mehr Bakterien und damit auch zu mehr absterbenden Bakterien führt. Das führt wiederum zu mehr organischem Material im Boden. „Auch wenn der größte Teil des organischen Kohlenstoffs in den Ökosystemen definitiv primär von Pflanzen produziert wird, so konnten wir zeigen, dass dieser große Teil der organischen Materials tatsächlich aus abgestorbenen Bakterien und Pilzen besteht. Das unterstreicht die Bedeutung, die Bakterien die Organismen in jedem Boden spielen“, fasst Matthias Kästner zusammen. Dazu kommt die Bedeutung für das globale Klima: Der Abbau dieses organischen Materials führt unter anderem zu Mineralisationsprodukten wie dem Treibhausgas Kohlendioxid (CO2). Schätzungen aus Großbritannien zufolge entspricht die Menge an CO2, die durch den Abbau von organischem Material in den Böden Englands und Wales pro Jahr in die Atmosphäre entweicht, der Größenordnung, um die die Treibhausgasemissionen dort pro Jahr reduziert wurden. Ohne Bodenschutz kann es folglich keine spürbaren Fortschritte beim Klimaschutz geben.
Tilo Arnhold

Publikationen:
Christian Schurig, Rienk H. Smittenberg, Juergen Berger, Fabio Kraft, Susanne K. Woche, Marc-O. Goebel, Hermann J. Heipieper, Anja Miltner, Matthias Kaestner (2012): Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry.
published online:DOI: 10.1007/s10533-012-9791-3
Anja Miltner, Petra Bombach, Burkhardt Schmidt-Brücken, Matthias Kästner (2012). SOM genesis – Microbial biomass a significant source. Biogeochemistry, published online: DOI 10.1007/s10533-011-9658-z
Die Untersuchungen wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des SPP1315-Projektes "DynaCarb" und der Europäischen Union im Rahmen des Projektes ModelPROBE gefördert.

Anja Miltner, Petra Bombach, Burkhard Schmidt-Brucken, Matthias Kaestner (2011): SOM genesis: microbial biomass as a significant source. Biogeochemistry (in press).
DOI: 10.1007/s10533-011-9658-z
Die Untersuchungen wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des SPP1090-Projektes "BioRefrak" und der Europäischen Union im Rahmen des Projektes "ModelPROBE" gefördert.

Weitere Informationen:
Prof. Matthias Kästner/ Dr. Anja Miltner/ Dr. Christian Schurig
Helmholtz-Zentrum für Umweltforschung (UFZ)
Telefon: 0341-235-1235
http://www.ufz.de/index.php?de=4459
http://www.ufz.de/index.php?de=4530
http://www.ufz.de/index.php?de=18888
oder über
Tilo Arnhold (UFZ-Pressestelle)
Telefon: 0341-235-1635
http://www.ufz.de/index.php?de=640

Weiterführende Links:
EU-Projekt ModelPROBE:
http://www.ufz.de/modelprobe/index.php?en=18269
DFG-Projekt DynaCarb:
http://www.spp1315.uni-jena.de/

Standpunkt: Boden – ein Tag macht noch keine Lobby:
http://www.ufz.de/index.php?de=31045
Wasser und Boden
http://www.ufz.de/index.php?de=21902
Biodiversität und Boden
http://www.ufz.de/index.php?de=20834
UFZ-Kernthema Wasser / Boden:
http://www.ufz.de/index.php?de=20167

Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg 1000 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert.
http://www.ufz.de/

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie, Verkehr und Weltraum. Die Helmholtz-Gemeinschaft ist mit über 33.000 Mitarbeiterinnen und Mitarbeitern in 18 Forschungszentren und einem Jahresbudget von rund 3,4 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des Naturforschers Hermann von Helmholtz (1821-1894).

http://www.helmholtz.de

Tilo Arnhold | UFZ News
Weitere Informationen:
http://www.ufz.de/index.php?de=640

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Eine vulkanische Riesenparty und ihr frostiger Kater danach
20.02.2019 | Universität Heidelberg

nachricht Mit künstlicher Intelligenz das Erdsystem verstehen
14.02.2019 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Im Focus: Licht von der Rolle – hybride OLED ermöglicht innovative funktionale Lichtoberflächen

Bislang wurden OLEDS ausschließlich als neue Beleuchtungstechnologie für den Einsatz in Leuchten und Lampen verwendet. Dabei bietet die organische Technologie viel mehr: Als Lichtoberfläche, die sich mit den unterschiedlichsten Materialien kombinieren lässt, kann sie Funktionalität und Design unzähliger Produkte verändern und revolutionieren. Beispielhaft für die vielen Anwendungsmöglichkeiten präsentiert das Fraunhofer FEP gemeinsam mit der EMDE development of light GmbH im Rahmen des EU-Projektes PI-SCALE auf der Münchner LOPEC (19. bis 21. März 2019), erstmals in Textildesign integrierte hybride OLEDs.

Als Anbieter von Forschungs- und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik setzt sich das Fraunhofer FEP schon lange mit der...

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

LastMileLogistics Conference in Frankfurt befasst sich mit Lieferkonzepten für Ballungsräume

19.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Materialdesign in 3D: vom Molekül bis zur Makrostruktur

21.02.2019 | Verfahrenstechnologie

Neue Mechanismen der Regulation von Nervenstammzellen

21.02.2019 | Biowissenschaften Chemie

Fledermäusen auf der Spur: Miniatur-Sensoren entschlüsseln Mutter-Kind-Beziehung

21.02.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics