Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

US-Förderung für Augsburger Graphen-Forschung

11.11.2016

Julian Schwinger Foundation unterstützt Modellierungsstudien am Lehrstuhl für Theoretische Physik II

Für die Intensivierung ihrer Studien zu topologischen Materialien hat die Arbeitsgruppe von Prof. Dr. Klaus Ziegler und Dr. Andreas Sinner am Lehrstuhl für Theoretische Physik II der Universität Augsburg jetzt einen Grant der renommierten US-amerikanischen Julian Schwinger Foundation for Physics Research (JSF) erhalten.


Der Fluss der Pfeile deutet an, dass sich die elektrische Leitfähigkeit von Graphen durch Vergrößerung der Probe immer einem universellen Wert (roter Fixpunkt) nähert.

© Universität Augsburg/IfP

Topologische Materialien unterscheiden sich von konventionellen Materialien dadurch, dass bei letzteren die opto-elektronischen Eigenschaften stark vom Grad der Verunreinigung durch Fremdatome abhängen. Diese Tatsache wird bei Halbleitern, etwa bei Silizium, gezielt genutzt, um ein bestimmtes Verhalten von opto-elektronischen Bauteilen festzulegen und auf dieser Basis unterschiedlichste Geräte – von der Präzisionstechnologie bis hin zur Elektronik des täglichen Bedarfs – zu fertigen.

Unveränderliche opto-elektronische Eigenschaften

In den letzten Jahren wurden nun aber auch Materialien entdeckt, sog. topologische Materialien, deren opto-elektronische Eigenschaften nur von zwei fundamentalen Naturkonstanten, von der elektrische Elementarladung und vom Planckschen Wirkungsquantum nämlich, bestimmt werden. Dadurch sind diese Eigenschaften für eine entsprechend große Klasse von Materialien invariant, also unveränderlich.

Mit theoretischen Modellen gut erklärbar

Ein typischer Vertreter dieser topologischen Materialien ist Graphen, ein aus Kohlenstoffatomen bestehender Film. Inzwischen ist bekannt, dass die invarianten Eigenschaften in Graphen ein Resultat des Zusammenspiels von einerseits Symmetrien und andererseits der Topologie interner Strukturen sind. Somit können sie mit Hilfe theoretischer Modelle gut erklärt werden.

Vorhersage neuer Materialeigenschaften

Die Arbeitsgruppe von Prof. Dr. Klaus Ziegler am Augsburger Lehrstuhl für Theoretische Physik widmet sich seit mehreren Jahren dem Studium solcher Modelle mit dem Ziel, experimentell gewonnene Resultate zu analysieren und neue Materialeigenschaften vorherzusagen. Ein dabei erzieltes Ergebnis ist die Erkenntnis, dass sich die elektrische Leitfähigkeit von Graphen durch Vergrößerung der Probe, unabhängig von den gewählten Ausgangsbedingungen, immer einem universellen Wert nähert (siehe Abbildung).

"Zumal die Zahl europäischer oder gar deutscher Forscher, die in den vergangenen zehn Jahren von der Julian Schwinger Foundation gefördert wurden, sehr überschaubar ist, freuen wir uns um so mehr über diese Unterstützung und sehen sie als Anerkennung unserer Arbeiten", so Ziegler.

Die JSF for Physics Research mit Sitz in Los Angeles geht auf eine Initiative des theoretischen Physikers und Nobelpreisträgers des Jahres 1965 Julian Schwinger (1918-1994) zurück, nach dem sie später benannt wurde. Mehr zur JSF unter http://www.physics.nus.edu.sg/~jsf/


Ansprechpartner:

• Prof. Dr. Klaus Ziegler
klaus.ziegler@physik.uni-augsburg.de

•Dr. Andreas Sinner
andreas.sinner@physik.uni-augsburg.de

Institut für Physik der Universität Augsburg
D-86135 Augsburg
Telefon: +49(0)821-598-3244

Weitere Informationen:

http://www.physics.nus.edu.sg/~jsf/

Klaus P. Prem | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Ausgezeichnet: „betop“ Magazin gewinnt Gold und Silber
05.08.2019 | Rittal GmbH & Co. KG

nachricht Bosch Global Supplier Award für Rittal
02.08.2019 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Informatik-Tagung vom 26. bis 30. August 2019 in Aachen

21.08.2019 | Veranstaltungsnachrichten

Proteinaggregation: Zusammenlagerung von Proteinen nicht nur bei Alzheimer und Parkinson relevant

21.08.2019 | Biowissenschaften Chemie

Das Schulbuch wird digital

21.08.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics