Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Solarzellen nach dem Vorbild der Natur

16.08.2011
Chemie-Doktorand der Universität Jena wird mit zwei Stipendien gefördert

Pflanzen absorbieren Licht und wandeln es in eine nutzbare Energieform um. Warum also nicht diese Idee der Natur aufgreifen und die Fotosynthese für die technische Gewinnung elektrischer Energie nutzbar machen?

Mit dieser Idee beschäftigt sich Benjamin Schulze von der Friedrich-Schiller-Universität Jena in seiner Promotion am Lehrstuhl für Organische und Makromolekulare Chemie unter der Betreuung von Prof. Dr. Ulrich S. Schubert. Für seine ausgezeichnete Arbeit erhielt der Nachwuchschemiker jetzt gleich zwei Stipendien, um an Tagungen in den USA teilnehmen und dort seine Forschung vorstellen zu können.

Zum einen erhielt er von der Gesellschaft Deutscher Chemiker die Möglichkeit, an einer „Gordon Research Conference“ kürzlich in den USA teilzunehmen. „Das war eine kleine, exklusive Forschungskonferenz mit weltweit führenden Wissenschaftlern auf ihrem Forschungsgebiet“, erklärt der 28-Jährige. „Hier ließen sich besonders intensive Diskussionen zu aktuellsten Themen führen.“ Die Reise wurde mit 500 Euro gefördert. Eine zweite Tagung findet Ende August in Denver (USA) statt. „Diese ist ganz anders, es werden mehr als 10.000 Teilnehmer erwartet. Ich halte hier drei Vorträge und stelle ein Poster vor“, sagt Schulze. Auf seiner Reise wird er mit 800 US-Dollar von der American Chemical Society unterstützt.

Innerhalb seines Promotionsprojektes beschäftigt sich Schulze mit Supramolekularer Chemie. Ein Anwendungsbeispiel dafür ist die Farbstoffsolarzelle, nach ihrem Erfinder auch Grätzel-Zelle genannt. Im Gegensatz zur klassischen Siliziumsolarzelle absorbiert hier nicht ein Halbleiter das Licht sondern ein Farbstoff. Grundlegend für Schulzes Arbeit an der Grätzel-Zelle sind Ruthenium-Metall-Komplexe, die als Farbstoff eine Wechselwirkung mit Licht ermöglichen. Sie werden an einen Halbleiter immobilisiert. Zwischen beiden herrscht eine schwache Wechselwirkung, die erlaubt, dass unter Lichtbestrahlung ein Elektron an den Halbleiter abgegeben wird. Durch einen Elektrolyten wird es auf Umwegen zurückgegeben – ein elektrischer Strom fließt. „Das besondere an dieser Art der Solarzelle ist, dass der Vorgang des Lichtsammelns vom Halbleiter getrennt wird“, erklärt der Jenaer Chemiker. „Durch Veränderung in der Farbstoffzusammensetzung kann direkt Einfluss darauf genommen werden, welches Licht – etwa welche Wellenlänge – aufgenommen wird.“ Zwar böte diese Solarzelle vor allem in der Herstellung einige Vorteile gegenüber herkömmlichen Solarzellen, sie erreicht aber leider bislang nicht deren Effizienz. Der Jenaer Wissenschaftler hat es sich zum Ziel gemacht, dies zu ändern.

Kontakt:
Benjamin Schulze
Institut für Organische Chemie und Makromolekulare Chemie der Universität Jena
Humboldtstraße 10, 07743 Jena
Tel.: 03641 / 948247
E-Mail: benjamin.schulze[at]uni-jena.de

Sebastian Hollstein | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Weltweit einzigartige Femtosekundenlaseranlage eingeweiht
21.06.2018 | Hochschule RheinMain

nachricht Stahl-Innovationspreis 2018: Mikro-Dampfturbine ausgezeichnet
21.06.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics