Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerkraftsignale aus den Tiefen des Alls

31.05.2017

Der Körber-Preis für die Europäische Wissenschaft 2017 geht an Physiker Karsten Danzmann

Den mit 750.000 Euro dotierten Körber-Preis 2017 erhält Karsten Danzmann. Der deutsche Physiker und sein Team entwickelten die Schlüsseltechnologien, darunter hochpräzise Laser, mit denen Detektoren in Amerika 2015 erstmals direkt Gravitationswellen nachweisen konnten.


Karsten Danzmann

Körber-Stiftung/Friedrun Reinhold

Damit haben Astronomen buchstäblich ein neues Fenster zum Kosmos aufgestoßen, denn bislang konnten sie das Weltall nur mit Hilfe elektromagnetischer Wellen erforschen –Licht, Radio-, Röntgen- oder Gammastrahlung. »Nun hat uns die Schwerkraft gleichsam ihren eigenen Boten geschickt – die Gravitationswellen«, sagt Danzmann.

»Sie eröffnen die Ära der Gravitationswellen-Astronomie, die bahnbrechend neue Erkenntnisse verspricht, da 99 Prozent des Universums dunkel sind«. Mit den Mitteln des Körber-Preises will Danzmann unter anderem die Lasertechnik für erdgestützte Detektoren weiter verfeinern.

Karsten Danzmann, 62, studierte Physik und promovierte 1980 an der Universität Hannover. 1986 ging er an die amerikanische Stanford University, wo er bis 1989 als Physikprofessor wirkte. Von 1993 bis 2001 leitete er die Außenstelle Hannover des Max-Planck-Instituts (MPI) für Quantenoptik. Seit 2002 ist er Direktor des MPI für Gravitationsphysik. Parallel dazu lehrt er seit 1993 als Professor an der Leibniz-Universität Hannover und leitet dort das Institut für Gravitationsphysik.

Im Herbst 2015 gelang einem weltweiten Team von Physikern eine Sensation: In den amerikanischen LIGO-Detektoren konnten sie erstmals direkt Gravitationswellen nachweisen. Dass Gravitationswellen existieren, hatte Albert Einstein bereits 1916 theoretisch vorhergesagt. Gemäß seiner Relativitätstheorie entsteht Schwerkraft dadurch, dass eine Masse die vierdimensionale Raumzeit krümmt.

Diese kann man sich als straff gespannte Gummimatte vorstellen. Legt man eine schwere Kugel darauf, beult diese nach unten aus – die Raumzeit krümmt sich. Rollt danach in der Nähe eine kleinere Kugel vorbei, so wird deren Bahn durch die Delle der schweren Kugel abgelenkt. Diese Bahnabweichung ist die Wirkung der Schwerkraft in der Raumzeit.

Wirft man mit voller Wucht eine besonders schwere Kugel auf die Matte, erzittert deren gesamte Fläche. Diese Erschütterungen entsprechen Einsteins Gravitationswellen, die sich als kosmisches Beben mit Lichtgeschwindigkeit durch die Raumzeit fortpflanzen. Gravitationswellen sind von Natur aus so schwach, dass Einstein glaubte, sie könnten niemals nachgewiesen werden. Typische Auslöser sind kosmische Katastrophen wie Supernova-Explosionen oder das Verschmelzen zweier sich umkreisender Schwarzer Löcher.

Direkt nachweisen lassen sich Gravitationswellen mit Michelson-Interferometern. Diese sind mit zwei sehr langen, rechtwinklig zueinander verlaufenden Messarmen ausgestattet. Das Grundprinzip ist einfach: Läuft eine Gravitationswelle durch den Detektor, wird einer der Arme gestaucht, der andere gedehnt. Diese Längenveränderungen werden mit Lasern vermessen. Kompliziert ist die Messtechnik, da diese extrem präzise sein muss: Die vier Kilometer langen Messarme der LIGO-Detektoren schwanken in ihrer Länge lediglich um einige Tausendstel des Durchmessers eines Wasserstoff-Atomkerns.

Die enorme Messpräzision der LIGO-Laser ist das Hauptverdienst des Danzmann-Teams. In Hannover betreiben die Forscher den Detektor GEO600, dessen Arme 600 Meter lang sind. In diesem haben die Physiker die Laser und Messapparaturen in jahrzehntelanger Arbeit auf höchste Präzision getrimmt. So sind etwa die optischen Systeme als Pendel aufgehängt, um Erschütterungen abzufangen. Zur Verstärkung werden sowohl der Laserstrahl als auch gemessene Signale im System recycelt. Dies hat die Messempfindlichkeit nochmals verzehnfacht. Diese zunächst für die Grundlagenforschung entwickelten Technologien werden inzwischen auf vielen Feldern ganz praktisch eingesetzt, so zum Beispiel in Erdvermessungssatelliten und in der Datenkommunikation.

Mit Hilfe der Optimierungen Danzmanns konnten die amerikanischen Detektoren am 14. September 2015 erstmals eine Gravitationswelle registrieren. Die Welle stammt von zwei Schwarzen Löchern mit 29 und 36 Sonnenmassen, die 1,3 Milliarden Lichtjahre von der Erde entfernt miteinander verschmolzen. Ein zweites Signal im Dezember 2015 räumte Restzweifel aus, dass das erste ein Artefakt gewesen sein könnte.

Ab 2034 will die europäische Weltraumbehörde ESA sogar ein Michelson-Interferometer im All stationieren. Drei Satelliten spannen Messarme mit einer Länge von 2,5 Millionen Kilometern auf. Dieser LISA-Detektor, dessen Grundkonzept ebenfalls vom Danzmann-Team stammt, ist besonders empfindlich für Gravitationswellen ultramassiver Schwarzer Löcher in Zentren von Galaxien.

Der Körber-Preis für die Europäische Wissenschaft 2017 wird Karsten Danzmann am 7. September im Großen Festsaal des Hamburger Rathauses überreicht.

Der Körber-Preis für die Europäische Wissenschaft zeichnet seit 1985 jedes Jahr einen wichtigen Durchbruch in den Physical oder den Life Sciences in Europa aus. Prämiert werden exzellente und innovative Forschungsansätze mit hohem Anwendungspotenzial. Mit einer Preissumme von 750.000 Euro gehört er zu den weltweit höchstdotierten Preisen. Nach der Auszeichnung mit dem Körber-Preis erhielten bereits sechs Preisträgerinnen und Preisträger den Nobelpreis.

Weitere Informationen:

http://www.koerber-preis.de

Andrea Bayerlein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Einstieg in die Nanowelt
22.06.2020 | Hochschule Aalen

nachricht Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020
22.05.2020 | Corporate Health Initiative

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Im Focus: Robuste Materialien in Schwingung versetzt

Kieler Physikteam beobachtet in Echtzeit extrem schnelle elektronische Änderungen in besonderer Materialklasse

In der Physik werden sie zurzeit intensiv erforscht, in der Elektronik könnten sie ganz neue Funktionen ermöglichen: Sogenannte topologische Materialien...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Neues Verständnis der Defektbildung an Silizium-Elektroden

Theoretisch lässt sich das Speichervermögen von handelsüblichen Lithiumionen-Batterien noch vervielfachen – mit einer Elektrode, die auf Silizium anstatt auf Graphit basiert. Doch in der Praxis machen solche Akkus mit Silizium-Anoden nach wenigen Lade-Entlade-Zyklen schlapp. Ein internationales Team um Forscher des Jülicher Instituts für Energie- und Klimaforschung hat jetzt in einzigartiger Detailgenauigkeit beobachtet, wie sich die Defekte in der Anode ausbilden. Dabei entdeckten sie bislang unbekannte strukturelle Inhomogenitäten in der Grenzschicht zwischen Anode und Elektrolyt. Die Erkenntnisse sind in der Fachzeitschrift „Nature Communications“ erschienen.

Silizium-basierte Anoden können in Lithium-Ionen-Akkus prinzipiell neunmal so viel Ladung speichern wie der üblicherweise verwendete Graphit, bei gleichem...

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Guido Bonati ist neuer Chief Technology Officer und Leiter Forschung & Entwicklung bei FISBA AG

08.07.2020 | Unternehmensmeldung

Social Learning in der Firma und virtuelle Seminarräume für Mitarbeiter

07.07.2020 | Seminare Workshops

„Maschinen-EKG“ soll Umwelt schonen

07.07.2020 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics