Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerkraftsignale aus den Tiefen des Alls

31.05.2017

Der Körber-Preis für die Europäische Wissenschaft 2017 geht an Physiker Karsten Danzmann

Den mit 750.000 Euro dotierten Körber-Preis 2017 erhält Karsten Danzmann. Der deutsche Physiker und sein Team entwickelten die Schlüsseltechnologien, darunter hochpräzise Laser, mit denen Detektoren in Amerika 2015 erstmals direkt Gravitationswellen nachweisen konnten.


Karsten Danzmann

Körber-Stiftung/Friedrun Reinhold

Damit haben Astronomen buchstäblich ein neues Fenster zum Kosmos aufgestoßen, denn bislang konnten sie das Weltall nur mit Hilfe elektromagnetischer Wellen erforschen –Licht, Radio-, Röntgen- oder Gammastrahlung. »Nun hat uns die Schwerkraft gleichsam ihren eigenen Boten geschickt – die Gravitationswellen«, sagt Danzmann.

»Sie eröffnen die Ära der Gravitationswellen-Astronomie, die bahnbrechend neue Erkenntnisse verspricht, da 99 Prozent des Universums dunkel sind«. Mit den Mitteln des Körber-Preises will Danzmann unter anderem die Lasertechnik für erdgestützte Detektoren weiter verfeinern.

Karsten Danzmann, 62, studierte Physik und promovierte 1980 an der Universität Hannover. 1986 ging er an die amerikanische Stanford University, wo er bis 1989 als Physikprofessor wirkte. Von 1993 bis 2001 leitete er die Außenstelle Hannover des Max-Planck-Instituts (MPI) für Quantenoptik. Seit 2002 ist er Direktor des MPI für Gravitationsphysik. Parallel dazu lehrt er seit 1993 als Professor an der Leibniz-Universität Hannover und leitet dort das Institut für Gravitationsphysik.

Im Herbst 2015 gelang einem weltweiten Team von Physikern eine Sensation: In den amerikanischen LIGO-Detektoren konnten sie erstmals direkt Gravitationswellen nachweisen. Dass Gravitationswellen existieren, hatte Albert Einstein bereits 1916 theoretisch vorhergesagt. Gemäß seiner Relativitätstheorie entsteht Schwerkraft dadurch, dass eine Masse die vierdimensionale Raumzeit krümmt.

Diese kann man sich als straff gespannte Gummimatte vorstellen. Legt man eine schwere Kugel darauf, beult diese nach unten aus – die Raumzeit krümmt sich. Rollt danach in der Nähe eine kleinere Kugel vorbei, so wird deren Bahn durch die Delle der schweren Kugel abgelenkt. Diese Bahnabweichung ist die Wirkung der Schwerkraft in der Raumzeit.

Wirft man mit voller Wucht eine besonders schwere Kugel auf die Matte, erzittert deren gesamte Fläche. Diese Erschütterungen entsprechen Einsteins Gravitationswellen, die sich als kosmisches Beben mit Lichtgeschwindigkeit durch die Raumzeit fortpflanzen. Gravitationswellen sind von Natur aus so schwach, dass Einstein glaubte, sie könnten niemals nachgewiesen werden. Typische Auslöser sind kosmische Katastrophen wie Supernova-Explosionen oder das Verschmelzen zweier sich umkreisender Schwarzer Löcher.

Direkt nachweisen lassen sich Gravitationswellen mit Michelson-Interferometern. Diese sind mit zwei sehr langen, rechtwinklig zueinander verlaufenden Messarmen ausgestattet. Das Grundprinzip ist einfach: Läuft eine Gravitationswelle durch den Detektor, wird einer der Arme gestaucht, der andere gedehnt. Diese Längenveränderungen werden mit Lasern vermessen. Kompliziert ist die Messtechnik, da diese extrem präzise sein muss: Die vier Kilometer langen Messarme der LIGO-Detektoren schwanken in ihrer Länge lediglich um einige Tausendstel des Durchmessers eines Wasserstoff-Atomkerns.

Die enorme Messpräzision der LIGO-Laser ist das Hauptverdienst des Danzmann-Teams. In Hannover betreiben die Forscher den Detektor GEO600, dessen Arme 600 Meter lang sind. In diesem haben die Physiker die Laser und Messapparaturen in jahrzehntelanger Arbeit auf höchste Präzision getrimmt. So sind etwa die optischen Systeme als Pendel aufgehängt, um Erschütterungen abzufangen. Zur Verstärkung werden sowohl der Laserstrahl als auch gemessene Signale im System recycelt. Dies hat die Messempfindlichkeit nochmals verzehnfacht. Diese zunächst für die Grundlagenforschung entwickelten Technologien werden inzwischen auf vielen Feldern ganz praktisch eingesetzt, so zum Beispiel in Erdvermessungssatelliten und in der Datenkommunikation.

Mit Hilfe der Optimierungen Danzmanns konnten die amerikanischen Detektoren am 14. September 2015 erstmals eine Gravitationswelle registrieren. Die Welle stammt von zwei Schwarzen Löchern mit 29 und 36 Sonnenmassen, die 1,3 Milliarden Lichtjahre von der Erde entfernt miteinander verschmolzen. Ein zweites Signal im Dezember 2015 räumte Restzweifel aus, dass das erste ein Artefakt gewesen sein könnte.

Ab 2034 will die europäische Weltraumbehörde ESA sogar ein Michelson-Interferometer im All stationieren. Drei Satelliten spannen Messarme mit einer Länge von 2,5 Millionen Kilometern auf. Dieser LISA-Detektor, dessen Grundkonzept ebenfalls vom Danzmann-Team stammt, ist besonders empfindlich für Gravitationswellen ultramassiver Schwarzer Löcher in Zentren von Galaxien.

Der Körber-Preis für die Europäische Wissenschaft 2017 wird Karsten Danzmann am 7. September im Großen Festsaal des Hamburger Rathauses überreicht.

Der Körber-Preis für die Europäische Wissenschaft zeichnet seit 1985 jedes Jahr einen wichtigen Durchbruch in den Physical oder den Life Sciences in Europa aus. Prämiert werden exzellente und innovative Forschungsansätze mit hohem Anwendungspotenzial. Mit einer Preissumme von 750.000 Euro gehört er zu den weltweit höchstdotierten Preisen. Nach der Auszeichnung mit dem Körber-Preis erhielten bereits sechs Preisträgerinnen und Preisträger den Nobelpreis.

Weitere Informationen:

http://www.koerber-preis.de

Andrea Bayerlein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Klimafreundliche Energie aus Abwärme
20.12.2019 | Technische Universität München

nachricht Der DPG-Technologietransferpreis 2020 geht an Orcan Energy für die Nutzung von Abwärme für die CO2-freie Stromerzeugung
16.12.2019 | Deutsche Physikalische Gesellschaft (DPG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forschungsreise: Auf der Suche nach den Triebfedern der Evolution

22.01.2020 | Biowissenschaften Chemie

Pflanzen nehmen Blei aus Perowskit-Solarzellen besser auf als erwartet

22.01.2020 | Biowissenschaften Chemie

Signale aus dem Erdinneren: Borexino-Experiment veröffentlicht neue Daten zu Geoneutrinos

22.01.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics