Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerkraftsignale aus den Tiefen des Alls

31.05.2017

Der Körber-Preis für die Europäische Wissenschaft 2017 geht an Physiker Karsten Danzmann

Den mit 750.000 Euro dotierten Körber-Preis 2017 erhält Karsten Danzmann. Der deutsche Physiker und sein Team entwickelten die Schlüsseltechnologien, darunter hochpräzise Laser, mit denen Detektoren in Amerika 2015 erstmals direkt Gravitationswellen nachweisen konnten.


Karsten Danzmann

Körber-Stiftung/Friedrun Reinhold

Damit haben Astronomen buchstäblich ein neues Fenster zum Kosmos aufgestoßen, denn bislang konnten sie das Weltall nur mit Hilfe elektromagnetischer Wellen erforschen –Licht, Radio-, Röntgen- oder Gammastrahlung. »Nun hat uns die Schwerkraft gleichsam ihren eigenen Boten geschickt – die Gravitationswellen«, sagt Danzmann.

»Sie eröffnen die Ära der Gravitationswellen-Astronomie, die bahnbrechend neue Erkenntnisse verspricht, da 99 Prozent des Universums dunkel sind«. Mit den Mitteln des Körber-Preises will Danzmann unter anderem die Lasertechnik für erdgestützte Detektoren weiter verfeinern.

Karsten Danzmann, 62, studierte Physik und promovierte 1980 an der Universität Hannover. 1986 ging er an die amerikanische Stanford University, wo er bis 1989 als Physikprofessor wirkte. Von 1993 bis 2001 leitete er die Außenstelle Hannover des Max-Planck-Instituts (MPI) für Quantenoptik. Seit 2002 ist er Direktor des MPI für Gravitationsphysik. Parallel dazu lehrt er seit 1993 als Professor an der Leibniz-Universität Hannover und leitet dort das Institut für Gravitationsphysik.

Im Herbst 2015 gelang einem weltweiten Team von Physikern eine Sensation: In den amerikanischen LIGO-Detektoren konnten sie erstmals direkt Gravitationswellen nachweisen. Dass Gravitationswellen existieren, hatte Albert Einstein bereits 1916 theoretisch vorhergesagt. Gemäß seiner Relativitätstheorie entsteht Schwerkraft dadurch, dass eine Masse die vierdimensionale Raumzeit krümmt.

Diese kann man sich als straff gespannte Gummimatte vorstellen. Legt man eine schwere Kugel darauf, beult diese nach unten aus – die Raumzeit krümmt sich. Rollt danach in der Nähe eine kleinere Kugel vorbei, so wird deren Bahn durch die Delle der schweren Kugel abgelenkt. Diese Bahnabweichung ist die Wirkung der Schwerkraft in der Raumzeit.

Wirft man mit voller Wucht eine besonders schwere Kugel auf die Matte, erzittert deren gesamte Fläche. Diese Erschütterungen entsprechen Einsteins Gravitationswellen, die sich als kosmisches Beben mit Lichtgeschwindigkeit durch die Raumzeit fortpflanzen. Gravitationswellen sind von Natur aus so schwach, dass Einstein glaubte, sie könnten niemals nachgewiesen werden. Typische Auslöser sind kosmische Katastrophen wie Supernova-Explosionen oder das Verschmelzen zweier sich umkreisender Schwarzer Löcher.

Direkt nachweisen lassen sich Gravitationswellen mit Michelson-Interferometern. Diese sind mit zwei sehr langen, rechtwinklig zueinander verlaufenden Messarmen ausgestattet. Das Grundprinzip ist einfach: Läuft eine Gravitationswelle durch den Detektor, wird einer der Arme gestaucht, der andere gedehnt. Diese Längenveränderungen werden mit Lasern vermessen. Kompliziert ist die Messtechnik, da diese extrem präzise sein muss: Die vier Kilometer langen Messarme der LIGO-Detektoren schwanken in ihrer Länge lediglich um einige Tausendstel des Durchmessers eines Wasserstoff-Atomkerns.

Die enorme Messpräzision der LIGO-Laser ist das Hauptverdienst des Danzmann-Teams. In Hannover betreiben die Forscher den Detektor GEO600, dessen Arme 600 Meter lang sind. In diesem haben die Physiker die Laser und Messapparaturen in jahrzehntelanger Arbeit auf höchste Präzision getrimmt. So sind etwa die optischen Systeme als Pendel aufgehängt, um Erschütterungen abzufangen. Zur Verstärkung werden sowohl der Laserstrahl als auch gemessene Signale im System recycelt. Dies hat die Messempfindlichkeit nochmals verzehnfacht. Diese zunächst für die Grundlagenforschung entwickelten Technologien werden inzwischen auf vielen Feldern ganz praktisch eingesetzt, so zum Beispiel in Erdvermessungssatelliten und in der Datenkommunikation.

Mit Hilfe der Optimierungen Danzmanns konnten die amerikanischen Detektoren am 14. September 2015 erstmals eine Gravitationswelle registrieren. Die Welle stammt von zwei Schwarzen Löchern mit 29 und 36 Sonnenmassen, die 1,3 Milliarden Lichtjahre von der Erde entfernt miteinander verschmolzen. Ein zweites Signal im Dezember 2015 räumte Restzweifel aus, dass das erste ein Artefakt gewesen sein könnte.

Ab 2034 will die europäische Weltraumbehörde ESA sogar ein Michelson-Interferometer im All stationieren. Drei Satelliten spannen Messarme mit einer Länge von 2,5 Millionen Kilometern auf. Dieser LISA-Detektor, dessen Grundkonzept ebenfalls vom Danzmann-Team stammt, ist besonders empfindlich für Gravitationswellen ultramassiver Schwarzer Löcher in Zentren von Galaxien.

Der Körber-Preis für die Europäische Wissenschaft 2017 wird Karsten Danzmann am 7. September im Großen Festsaal des Hamburger Rathauses überreicht.

Der Körber-Preis für die Europäische Wissenschaft zeichnet seit 1985 jedes Jahr einen wichtigen Durchbruch in den Physical oder den Life Sciences in Europa aus. Prämiert werden exzellente und innovative Forschungsansätze mit hohem Anwendungspotenzial. Mit einer Preissumme von 750.000 Euro gehört er zu den weltweit höchstdotierten Preisen. Nach der Auszeichnung mit dem Körber-Preis erhielten bereits sechs Preisträgerinnen und Preisträger den Nobelpreis.

Weitere Informationen:

http://www.koerber-preis.de

Andrea Bayerlein | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Europa-Preis: DFG zeichnet ausgewählte „Jugend forscht“-Sieger aus
22.05.2019 | Deutsche Forschungsgemeinschaft (DFG)

nachricht DFG fördert 13 neue Graduiertenkollegs
13.05.2019 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

Wissensparcour bei der time4you gestartet

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

18 erdgroße Exoplaneten entdeckt

22.05.2019 | Physik Astronomie

Erreger Helicobacter pylori - Evolution im Magen

22.05.2019 | Biowissenschaften Chemie

Fraunhofer HHI beteiligt sich an BMBF-geförderter Großinitiative für die Quantenkommunikation

22.05.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics