Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Arbeitsgruppe untersucht lichtgesteuerte Organisation von zellartigen Kompartimenten

04.02.2016

Seit dem 1. Januar 2016 leitet Dr. Seraphine Wegner eine neue Forschungsgruppe am Max-Planck-Institut für Polymerforschung. Im Fokus steht die lichtgesteuerte Organisation von sogenannten Kompartimenten. Diese zellartigen Kammern sind durch eine Membran voneinander getrennt und sollen mittels Lichtstrahlen gesteuert werden. Die Wissenschaftlerin untersucht mit ihren Kollegen welche Rückschlüsse sich daraus auf die Entwicklung neuer biologischer Materialien ziehen lassen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert die Arbeitsgruppe mit einer Summe von 1.400.000 Euro innerhalb der nächsten fünf Jahre.

Die unabhängige MaxSynBio-Forschungsgruppe rund um Dr. Wegner kombiniert in ihrer Arbeit zwei Disziplinen: Synthetische Biologie und Optogenetik. In der Synthetischen Biologie soll biologische Materie nicht nur gesteuert, sondern auch neu konstruiert werden. Anhand eines Bottom-up-Ansatzes plant die Gruppe, die dynamische, aber dennoch regulierte Organisation von Zellen, wie sie in der Natur vorhanden ist, mit synthetischen zellenartigen Kompartimenten zu reproduzieren.

Hierfür werden Pflanzenproteine, die auf sichtbares Licht reagieren, eingesetzt. Deshalb finden sie in der Optogenetik eine weit verbreitete Anwendung. Die Optogenetik setzt sich aus einer Kombination genetischer und optischer Verfahren zusammen. Sie erzielt eine schnelle Steuerung von genau definierten Ereignissen mit Licht in biologischen Systemen.

Diese Methode bringt einige Vorteile: Sie ermöglicht eine hohe räumliche und zeitliche Auflösung und ist zudem nicht invasiv und bioorthogonal. Somit haben die lichtgesteuerten Reaktionen keinen Einfluss auf die regulären biochemischen Prozesse.

Ein weiterer Schwerpunkt der Gruppe besteht darin, Zellkontakte mit Licht zu steuern. „Wir hoffen, wertvolle Einblicke in die Wechselwirkungen zwischen Zellen und synthetischen Oberflächen zu gewinnen und diese Ergebnisse für die Entwicklung von neuen biologischen Materialien anzuwenden", so Wegner.

In Vielzellern interagieren die einzelnen Zellen sowohl mit ihren Nachbarn als auch mit der extrazellulären Matrix (EZM), um Zell-Zell und Zell-Matrix-Kontakte zu bilden. Die einzelne Zelle verarbeitet zuerst alle Signale und reagiert dementsprechend auf ihre Umgebung, was zu einer Adhäsion, Migration, Proliferation oder sogar zu einer Selbstzerstörung führen kann.

Angestrebt wird die photochemische Steuerung von Zell-Matrix- und Zell-Zell-Wechselwirkungen mit lichtempfindlichen Molekülen. Nicht nur interzelluläre Prozesse, wie kollektive Zellmigration und Differenzierung, sondern auch intrazelluläre Prozesse, zum Beispiel lokale Zell-Zell-Kontakte, erforschen die Wissenschaftler rund um Dr. Wegner.

Über das Projekt:
Dr. Wegners Gruppe gehört zum Max-Planck-Forschungsnetzwerk MaxSynBio, das sich mit Synthetischer Biologie befasst. Gruppen aus neun Max-Planck-Instituten in Deutschland sowie der Lehrstuhl für Systematische Theologie II (Ethik) der Friedrich-Alexander-Universität Erlangen-Nürnberg arbeiten zusammen, um Protozellen zu etablieren. Diese sind auf ein Minimum ihrer lebensnotwendigen Bestandteile reduziert und wecken große Erwartungen in der Bioproduktion, etwa von Biokraftstoffen, Biomaterialien oder Wirkstoffen für die Medizin.

Zur Person:
Seraphine Wegner leitet seit 1. Januar 2016 die MaxSynBio-Gruppe am Max-Planck-Institut für Polymerforschung. Im Jahr 2011 kam sie als Postdoktorandin an das Max-Planck-Institut für Intelligente Systeme in Stuttgart, wo sie sich mit verschiedenen Themen zu Oberflächenfunktionalisierungs- und Proteinimmobilisierungstechniken beschäftigte. Die geborene Düsseldorferin verbrachte zudem bereits viele Jahre im Ausland. Sie lebte 15 Jahre lang in der Türkei, bevor sie in die USA umzog. Dort absolvierte sie an der Universität von Chicago ihre Doktorarbeit in Chemie und arbeitete an der Entwicklung von Metallionensensoren mittels metalloregulatorischen Proteinen für die in-vivo-Bildgebung.

Natacha Bouvier | Max-Planck-Institut für Polymerforschung
Weitere Informationen:
http://www.mpip-mainz.mpg.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Ultraschall verbindet
13.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht DFG fördert 15 neue Graduiertenkollegs 11/2018
12.11.2018 | Deutsche Forschungsgemeinschaft (DFG)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was das Meer zur Klimaregulierung beiträgt: Neue Erkenntnisse helfen bei der Berechnung

14.11.2018 | Biowissenschaften Chemie

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungsnachrichten

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics